whisper-small-cv-tr / README.md
Sercan's picture
update model card README.md
ab0860a
metadata
language:
  - tr
license: apache-2.0
tags:
  - whisper
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Turkish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 tr
          type: mozilla-foundation/common_voice_11_0
          config: tr
          split: test
          args: tr
        metrics:
          - name: Wer
            type: wer
            value: 16.318103103769815

Whisper Small Turkish

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 tr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2860
  • Wer: 16.3181
  • Cer: 4.1450

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.1563 1.0 2500 0.2524 19.8570 5.1738
0.032 2.01 5000 0.2567 18.5627 4.7793
0.013 3.01 7500 0.2637 17.7723 4.6664
0.0057 4.02 10000 0.2703 17.0596 4.3662
0.0012 5.02 12500 0.2696 17.8322 5.2286
0.003 6.03 15000 0.2800 16.7200 4.2972
0.0003 7.03 17500 0.2834 16.4091 4.2018
0.0002 8.04 20000 0.2860 16.3181 4.1450

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.1.dev0
  • Tokenizers 0.13.2