intent-classifier / README.md
Serj's picture
Adapted model to be more general. Accuracy ~60 on Banking77 and ~80 on Atis.
532933c verified
---
tags:
- intent, topic-discovery
datasets:
- clinc/clinc_oos
widget:
- text: 'Topic %% Customer: How do I get my money back?.
END MESSAGE
Choose one topic that matches customer''s issue.
# renew subscription # account deletion # cancel subscription # resume subscription
# refund requests # other # general # item damaged # malfunction # hello # intro
# question
Class name: '
example_title: Open Label Intent Classification
---
# Prompt Structure
Topic %% Customer: text.
END MESSAGE
OPTIONS:
each class separated by %
Choose one topic that matches customer's issue.
Class name:
You have to have a period after the end of the text, otherwise you'll get funky results. That's how the model was trained.
# Model Card for Model ID
Intent classification is the act of classifying customer's in to different pre defined categories.
Sometimes intent classification is referred to as topic classification.
By fine tuning a T5 model with prompts containing sythetic data that resembles customer's requests this
model is able to classify intents in a dynamic way by adding all of the categories to the prompt
## Model Details
Fine tuned Flan-T5-Base
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** Serj Smorodinsky
- **Model type:** Flan-T5-Base
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** Flan-T5-Base
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/SerjSmor/intent_classification
## How to Get Started with the Model
```
class IntentClassifier:
def __init__(self, model_name="serj/intent-classifier", device="cuda"):
self.model = T5ForConditionalGeneration.from_pretrained(model_name).to(device)
self.tokenizer = T5Tokenizer.from_pretrained(model_name)
self.device = device
def build_prompt(text, prompt="", company_name="", company_specific=""):
if company_name == "Pizza Mia":
company_specific = "This company is a pizzeria place."
if company_name == "Online Banking":
company_specific = "This company is an online banking."
return f"Company name: {company_name} is doing: {company_specific}\nCustomer: {text}.\nEND MESSAGE\nChoose one topic that matches customer's issue.\n{prompt}\nClass name: "
def predict(self, text, prompt_options, company_name, company_portion) -> str:
input_text = build_prompt(text, prompt_options, company_name, company_portion)
# print(input_text)
# Tokenize the concatenated inp_ut text
input_ids = self.tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True).to(self.device)
# Generate the output
output = self.model.generate(input_ids)
# Decode the output tokens
decoded_output = self.tokenizer.decode(output[0], skip_special_tokens=True)
return decoded_output
m = IntentClassifier("serj/intent-classifier")
print(m.predict("Hey, after recent changes, I want to cancel subscription, please help.",
"OPTIONS:\n refund\n cancel subscription\n damaged item\n return item\n", "Company",
"Products and subscriptions"))
```
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
https://github.com/SerjSmor/intent_classification
HF dataset will be added in the future.
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
https://github.com/SerjSmor/intent_classification/blob/main/t5_generator_trainer.py
Using HF trainer
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
evaluation_strategy="epoch"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
# compute_metrics=compute_metrics
)
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
The newest version of the model is finetuned on 2 synthetic datasets and 41 first classes of clinc_oos in a few shot manner.
All datasets have 10-20 samples per class. Training data did not include Atis dataset.
Atis zero shot test set evaluation: weighted F1 87%
Clinc test set is next.
#### Summary
#### Hardware
Nvidia RTX3060 12Gb