Edit model card

distilbert-base-uncased__hate_speech_offensive__train-8-6

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1275
  • Accuracy: 0.3795

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.11 1.0 5 1.1184 0.0
1.0608 2.0 10 1.1227 0.0
1.0484 3.0 15 1.1009 0.2
0.9614 4.0 20 1.1009 0.2
0.8545 5.0 25 1.0772 0.2
0.8241 6.0 30 1.0457 0.2
0.708 7.0 35 1.0301 0.4
0.5045 8.0 40 1.0325 0.4
0.4175 9.0 45 1.0051 0.4
0.3446 10.0 50 0.9610 0.4
0.2851 11.0 55 0.9954 0.4
0.1808 12.0 60 1.0561 0.4
0.1435 13.0 65 1.0218 0.4
0.1019 14.0 70 1.0254 0.4
0.0908 15.0 75 0.9935 0.4
0.0591 16.0 80 1.0090 0.4
0.0512 17.0 85 1.0884 0.4
0.0397 18.0 90 1.2732 0.4
0.039 19.0 95 1.2979 0.6
0.0325 20.0 100 1.2705 0.4

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2
  • Tokenizers 0.10.3
Downloads last month
30
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.