Edit model card

Usage

Plese find below example how to generate cover letter for input.

Running the model on a GPU


from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("ShashiVish/t5-base-fine-tune-1024-cover-letter")
model = T5ForConditionalGeneration.from_pretrained("ShashiVish/t5-base-fine-tune-1024-cover-letter" , max_length = 512 , device_map="auto")

job_title = "Senior Java Developer"
preferred_qualification = "3+ years of Java, Spring Boot"
hiring_company_name = "Google"
user_name = "Emily Evans"
past_working_experience= "Java Developer at XYZ for 4 years"
current_working_experience = "Senior Java Developer at ABC for 1 year"
skilleset= "Java, Spring Boot, Microservices, SQL, AWS"
qualification = "Master's in Electronics Science"


input_text = f" Generate Cover Letter for Role: {job_title}, \
 Preferred Qualifications: {preferred_qualification}, \
 Hiring Company: {hiring_company_name}, User Name: {user_name}, \
 Past Working Experience: {past_working_experience}, Current Working Experience: {current_working_experience}, \
 Skillsets: {skilleset}, Qualifications: {qualification} "

# Tokenize and generate predictions
input_ids = tokenizer.encode(input_text, return_tensors='pt', max_length=2048, truncation=False, padding=True)
input_ids = input_ids.to('cuda')
output_ids = model.generate(input_ids)

# Decode the output
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)

print("Generated Cover Letter:")
print(output_text)

Running the model on a CPU


from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("ShashiVish/t5-base-fine-tune-1024-cover-letter")
model = T5ForConditionalGeneration.from_pretrained("ShashiVish/t5-base-fine-tune-1024-cover-letter" , max_length = 512 )

job_title = "Senior Java Developer"
preferred_qualification = "3+ years of Java, Spring Boot"
hiring_company_name = "Google"
user_name = "Emily Evans"
past_working_experience= "Java Developer at XYZ for 4 years"
current_working_experience = "Senior Java Developer at ABC for 1 year"
skilleset= "Java, Spring Boot, Microservices, SQL, AWS"
qualification = "Master's in Electronics Science"


input_text = f" Generate Cover Letter for Role: {job_title}, \
 Preferred Qualifications: {preferred_qualification}, \
 Hiring Company: {hiring_company_name}, User Name: {user_name}, \
 Past Working Experience: {past_working_experience}, Current Working Experience: {current_working_experience}, \
 Skillsets: {skilleset}, Qualifications: {qualification} "

# Tokenize and generate predictions
input_ids = tokenizer.encode(input_text, return_tensors='pt', max_length=2048, truncation=False, padding=True)
output_ids = model.generate(input_ids)

# Decode the output
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)

print("Generated Cover Letter:")
print(output_text)
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ShashiVish/t5-base-fine-tune-1024-cover-letter