File size: 5,136 Bytes
bc44030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d6910
bc44030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d6910
bc44030
 
 
47d6910
bc44030
 
47d6910
bc44030
 
 
 
 
 
 
47d6910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc44030
 
 
 
47d6910
 
 
bc44030
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: nyankole_wav2vec2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nyankole_wav2vec2

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8606
- Wer: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 55
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:---:|
| 7.4272        | 0.4739  | 50   | 2.9131          | 1.0 |
| 2.8729        | 0.9479  | 100  | 2.8567          | 1.0 |
| 2.9027        | 1.4218  | 150  | 2.9014          | 1.0 |
| 2.8676        | 1.8957  | 200  | 2.8607          | 1.0 |
| 2.8484        | 2.3697  | 250  | 2.8482          | 1.0 |
| 2.8807        | 2.8436  | 300  | 2.8553          | 1.0 |
| 2.8513        | 3.3175  | 350  | 2.8731          | 1.0 |
| 2.8489        | 3.7915  | 400  | 2.8524          | 1.0 |
| 2.841         | 4.2654  | 450  | 2.8468          | 1.0 |
| 2.9182        | 4.7393  | 500  | 2.8572          | 1.0 |
| 2.8441        | 5.2133  | 550  | 2.8642          | 1.0 |
| 2.8486        | 5.6872  | 600  | 2.8690          | 1.0 |
| 2.8455        | 6.1611  | 650  | 2.8663          | 1.0 |
| 2.845         | 6.6351  | 700  | 2.8611          | 1.0 |
| 2.856         | 7.1090  | 750  | 2.8781          | 1.0 |
| 2.8429        | 7.5829  | 800  | 2.8612          | 1.0 |
| 2.8456        | 8.0569  | 850  | 2.8555          | 1.0 |
| 2.8465        | 8.5308  | 900  | 2.8596          | 1.0 |
| 2.8465        | 9.0047  | 950  | 2.8507          | 1.0 |
| 2.848         | 9.4787  | 1000 | 2.8527          | 1.0 |
| 2.8441        | 9.9526  | 1050 | 2.8702          | 1.0 |
| 2.8452        | 10.4265 | 1100 | 2.8782          | 1.0 |
| 2.8446        | 10.9005 | 1150 | 2.8736          | 1.0 |
| 2.8433        | 11.3744 | 1200 | 2.8541          | 1.0 |
| 2.842         | 11.8483 | 1250 | 2.8678          | 1.0 |
| 2.8442        | 12.3223 | 1300 | 2.8559          | 1.0 |
| 2.8473        | 12.7962 | 1350 | 2.8538          | 1.0 |
| 2.843         | 13.2701 | 1400 | 2.8592          | 1.0 |
| 2.8429        | 13.7441 | 1450 | 2.8571          | 1.0 |
| 2.8431        | 14.2180 | 1500 | 2.8860          | 1.0 |
| 2.8428        | 14.6919 | 1550 | 2.8611          | 1.0 |
| 2.8429        | 15.1659 | 1600 | 2.8763          | 1.0 |
| 2.8387        | 15.6398 | 1650 | 2.8637          | 1.0 |
| 2.8503        | 16.1137 | 1700 | 2.8588          | 1.0 |
| 2.8463        | 16.5877 | 1750 | 2.8560          | 1.0 |
| 2.8414        | 17.0616 | 1800 | 2.8550          | 1.0 |
| 2.8417        | 17.5355 | 1850 | 2.8582          | 1.0 |
| 2.8438        | 18.0095 | 1900 | 2.8502          | 1.0 |
| 2.8497        | 18.4834 | 1950 | 2.8825          | 1.0 |
| 2.8377        | 18.9573 | 2000 | 2.8622          | 1.0 |
| 2.8412        | 19.4313 | 2050 | 2.8711          | 1.0 |
| 2.8405        | 19.9052 | 2100 | 2.8786          | 1.0 |
| 2.8419        | 20.3791 | 2150 | 2.8467          | 1.0 |
| 2.8426        | 20.8531 | 2200 | 2.8627          | 1.0 |
| 2.8454        | 21.3270 | 2250 | 2.8640          | 1.0 |
| 2.8397        | 21.8009 | 2300 | 2.8600          | 1.0 |
| 2.8405        | 22.2749 | 2350 | 2.8716          | 1.0 |
| 2.8413        | 22.7488 | 2400 | 2.8498          | 1.0 |
| 2.8454        | 23.2227 | 2450 | 2.8647          | 1.0 |
| 2.8415        | 23.6967 | 2500 | 2.8727          | 1.0 |
| 2.8381        | 24.1706 | 2550 | 2.8600          | 1.0 |
| 2.8405        | 24.6445 | 2600 | 2.8604          | 1.0 |
| 2.8442        | 25.1185 | 2650 | 2.8543          | 1.0 |
| 2.836         | 25.5924 | 2700 | 2.8613          | 1.0 |
| 2.8479        | 26.0664 | 2750 | 2.8664          | 1.0 |
| 2.842         | 26.5403 | 2800 | 2.8574          | 1.0 |
| 2.8406        | 27.0142 | 2850 | 2.8558          | 1.0 |
| 2.8435        | 27.4882 | 2900 | 2.8587          | 1.0 |
| 2.8387        | 27.9621 | 2950 | 2.8568          | 1.0 |
| 2.8442        | 28.4360 | 3000 | 2.8573          | 1.0 |
| 2.8365        | 28.9100 | 3050 | 2.8591          | 1.0 |
| 2.8428        | 29.3839 | 3100 | 2.8621          | 1.0 |
| 2.8386        | 29.8578 | 3150 | 2.8606          | 1.0 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1