Edit model card

furina_esp_loss_5e-06

This model is a fine-tuned version of yihongLiu/furina on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0212
  • Spearman Corr: 0.7689

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Spearman Corr
No log 0.94 200 0.0221 0.7657
No log 1.89 400 0.0230 0.7642
0.0024 2.83 600 0.0224 0.7652
0.0024 3.77 800 0.0216 0.7663
0.0023 4.72 1000 0.0223 0.7644
0.0023 5.66 1200 0.0218 0.7638
0.0023 6.6 1400 0.0229 0.7641
0.0023 7.55 1600 0.0219 0.7640
0.0022 8.49 1800 0.0230 0.7634
0.0022 9.43 2000 0.0228 0.7634
0.0022 10.38 2200 0.0224 0.7661
0.0022 11.32 2400 0.0211 0.7680
0.0028 12.26 2600 0.0216 0.7687
0.0028 13.21 2800 0.0219 0.7669
0.0028 14.15 3000 0.0218 0.7697
0.0028 15.09 3200 0.0216 0.7665
0.0027 16.04 3400 0.0215 0.7664
0.0027 16.98 3600 0.0219 0.7683
0.0027 17.92 3800 0.0215 0.7691
0.0026 18.87 4000 0.0212 0.7689

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
7
Safetensors
Model size
394M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Shijia/furina_esp_loss_5e-06

Base model

yihongLiu/furina
Finetuned
(151)
this model