Shijia's picture
End of training
4817d5a verified
---
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_seed42_eng_esp_hau_cross_5e-06
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# furina_seed42_eng_esp_hau_cross_5e-06
This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0260
- Spearman Corr: 0.7338
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|
| No log | 0.48 | 200 | 0.0504 | 0.1104 |
| No log | 0.97 | 400 | 0.0316 | 0.6024 |
| No log | 1.45 | 600 | 0.0338 | 0.6583 |
| No log | 1.94 | 800 | 0.0294 | 0.6741 |
| 0.0692 | 2.42 | 1000 | 0.0294 | 0.6849 |
| 0.0692 | 2.91 | 1200 | 0.0312 | 0.6991 |
| 0.0692 | 3.39 | 1400 | 0.0312 | 0.7002 |
| 0.0692 | 3.88 | 1600 | 0.0231 | 0.7199 |
| 0.0291 | 4.36 | 1800 | 0.0243 | 0.7215 |
| 0.0291 | 4.85 | 2000 | 0.0286 | 0.7169 |
| 0.0291 | 5.33 | 2200 | 0.0274 | 0.7279 |
| 0.0291 | 5.82 | 2400 | 0.0248 | 0.7313 |
| 0.0248 | 6.3 | 2600 | 0.0266 | 0.7305 |
| 0.0248 | 6.79 | 2800 | 0.0238 | 0.7325 |
| 0.0248 | 7.27 | 3000 | 0.0262 | 0.7311 |
| 0.0248 | 7.76 | 3200 | 0.0260 | 0.7338 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2