Shijia's picture
End of training
ba0ea55 verified
---
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_seed42_eng_kin_amh_basic_5e-06
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# furina_seed42_eng_kin_amh_basic_5e-06
This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0229
- Spearman Corr: 0.7406
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|
| No log | 1.75 | 200 | 0.0718 | 0.0554 |
| 0.1419 | 3.51 | 400 | 0.0366 | 0.4543 |
| 0.0605 | 5.26 | 600 | 0.0293 | 0.6111 |
| 0.0327 | 7.02 | 800 | 0.0270 | 0.6638 |
| 0.0263 | 8.77 | 1000 | 0.0265 | 0.6874 |
| 0.0228 | 10.53 | 1200 | 0.0254 | 0.6896 |
| 0.0204 | 12.28 | 1400 | 0.0240 | 0.7026 |
| 0.0188 | 14.04 | 1600 | 0.0228 | 0.7227 |
| 0.0188 | 15.79 | 1800 | 0.0248 | 0.7165 |
| 0.0176 | 17.54 | 2000 | 0.0249 | 0.7234 |
| 0.0169 | 19.3 | 2200 | 0.0231 | 0.7327 |
| 0.0163 | 21.05 | 2400 | 0.0228 | 0.7329 |
| 0.0153 | 22.81 | 2600 | 0.0227 | 0.7384 |
| 0.0146 | 24.56 | 2800 | 0.0227 | 0.7387 |
| 0.0144 | 26.32 | 3000 | 0.0233 | 0.7432 |
| 0.0139 | 28.07 | 3200 | 0.0229 | 0.7406 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2