Edit model card

Mistral7b-fine-tuned-qlora

im

Model version and Dataset

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on timdettmers/openassistant-guanaco dataset.

Usage guidance

Please refer to this notebook for a complete demo including notes regarding cloud deployment

Inference

import os
from os.path import exists, join, isdir
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig
from peft import PeftModel
from peft.tuners.lora import LoraLayer

# Update variables!
max_new_tokens = 100
top_p = 0.9
temperature=0.7
user_question = "What is  central limit theorem?"

# Base model
model_name_or_path = 'mistralai/Mistral-7B-v0.1' # Change it to 'YOUR_BASE_MODEL'
adapter_path = 'ShirinYamani/mistral7b-fine-tuned-qlora' # Change it to 'YOUR_ADAPTER_PATH'

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
# if you wanna use LLaMA HF then fix the early conversion issues.
tokenizer.bos_token_id = 1

# Load the model (use bf16 for faster inference)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    torch_dtype=torch.bfloat16,
    device_map={"": 0},
    # Qlora -- 4-bit config
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type='nf4',
    )
)

model = PeftModel.from_pretrained(model, adapter_path)
model.eval()

prompt = (
    "A chat between a curious human and an artificial intelligence assistant. "
    "The assistant gives helpful, detailed, and polite answers to the user's questions. "
    "### Human: {user_question}"
    "### Assistant: "
)

def generate(model, user_question, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature):
    inputs = tokenizer(prompt.format(user_question=user_question), return_tensors="pt").to('cuda')

    outputs = model.generate(
        **inputs,
        generation_config=GenerationConfig(
            do_sample=True,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            temperature=temperature,
        )
    )

    text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print(text)
    return text

generate(model, user_question)

Training hyperparameters

- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 10
- mixed_precision_training: Native AMP

Framework versions

- PEFT 0.11.2.dev0
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ShirinYamani/mistral7b-fine-tuned-qlora

Adapter
(1172)
this model

Dataset used to train ShirinYamani/mistral7b-fine-tuned-qlora