out with the old in with the new
#2
by
Delta-Vector
- opened
- README.md +95 -74
- tokenizer.json +2 -2
- tokenizer_config.json +256 -0
README.md
CHANGED
@@ -43,39 +43,32 @@ state of the art AI models and helping foster innovation for everyone.
|
|
43 |
|
44 |
### Usage
|
45 |
|
46 |
-
Below we share some code snippets on how to get quickly started with running the model. First
|
47 |
-
|
|
|
|
|
48 |
|
49 |
-
|
50 |
|
|
|
51 |
|
52 |
```python
|
53 |
-
# pip install accelerate
|
54 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
55 |
import torch
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
"google/gemma-2-9b",
|
60 |
-
|
61 |
-
torch_dtype=torch.bfloat16
|
62 |
)
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
print(tokenizer.decode(outputs[0]))
|
69 |
```
|
70 |
|
71 |
-
|
72 |
-
#### Running the model on a GPU using different precisions
|
73 |
-
|
74 |
-
The native weights of this model were exported in `bfloat16` precision. You can use `float16`, which may be faster on certain hardware, indicating the `torch_dtype` when loading the model. For convenience, the `float16` revision of the repo contains a copy of the weights already converted to that precision.
|
75 |
-
|
76 |
-
You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
|
77 |
-
|
78 |
-
* _Using `torch.float16`_
|
79 |
|
80 |
```python
|
81 |
# pip install accelerate
|
@@ -86,57 +79,31 @@ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
|
86 |
model = AutoModelForCausalLM.from_pretrained(
|
87 |
"google/gemma-2-9b",
|
88 |
device_map="auto",
|
89 |
-
torch_dtype=torch.float16,
|
90 |
-
revision="float16",
|
91 |
)
|
92 |
|
93 |
input_text = "Write me a poem about Machine Learning."
|
94 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
95 |
|
96 |
-
outputs = model.generate(**input_ids)
|
97 |
print(tokenizer.decode(outputs[0]))
|
98 |
```
|
99 |
|
100 |
-
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
|
106 |
-
|
107 |
-
model
|
108 |
-
"google/gemma-2-9b",
|
109 |
-
device_map="auto",
|
110 |
-
torch_dtype=torch.bfloat16)
|
111 |
-
|
112 |
-
input_text = "Write me a poem about Machine Learning."
|
113 |
-
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
114 |
-
|
115 |
-
outputs = model.generate(**input_ids)
|
116 |
-
print(tokenizer.decode(outputs[0]))
|
117 |
-
```
|
118 |
-
|
119 |
-
* _Upcasting to `torch.float32`_
|
120 |
-
|
121 |
-
```python
|
122 |
-
# pip install accelerate
|
123 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
124 |
-
|
125 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
126 |
-
model = AutoModelForCausalLM.from_pretrained(
|
127 |
-
"google/gemma-2-9b",
|
128 |
-
device_map="auto")
|
129 |
-
|
130 |
-
input_text = "Write me a poem about Machine Learning."
|
131 |
-
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
132 |
-
|
133 |
-
outputs = model.generate(**input_ids)
|
134 |
-
print(tokenizer.decode(outputs[0]))
|
135 |
```
|
136 |
|
137 |
#### Quantized Versions through `bitsandbytes`
|
138 |
|
139 |
-
|
|
|
|
|
|
|
140 |
|
141 |
```python
|
142 |
# pip install bitsandbytes accelerate
|
@@ -147,16 +114,21 @@ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
|
147 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
148 |
model = AutoModelForCausalLM.from_pretrained(
|
149 |
"google/gemma-2-9b",
|
150 |
-
quantization_config=quantization_config
|
|
|
151 |
|
152 |
input_text = "Write me a poem about Machine Learning."
|
153 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
154 |
|
155 |
-
outputs = model.generate(**input_ids)
|
156 |
print(tokenizer.decode(outputs[0]))
|
157 |
```
|
|
|
158 |
|
159 |
-
|
|
|
|
|
|
|
160 |
|
161 |
```python
|
162 |
# pip install bitsandbytes accelerate
|
@@ -167,30 +139,79 @@ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
|
167 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
168 |
model = AutoModelForCausalLM.from_pretrained(
|
169 |
"google/gemma-2-9b",
|
170 |
-
quantization_config=quantization_config
|
|
|
171 |
|
172 |
input_text = "Write me a poem about Machine Learning."
|
173 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
174 |
|
175 |
-
outputs = model.generate(**input_ids)
|
176 |
print(tokenizer.decode(outputs[0]))
|
177 |
```
|
|
|
178 |
|
|
|
179 |
|
180 |
-
|
|
|
|
|
|
|
181 |
|
182 |
-
|
|
|
183 |
|
184 |
-
|
185 |
|
186 |
-
```
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
```
|
193 |
|
|
|
|
|
|
|
|
|
194 |
### Inputs and outputs
|
195 |
|
196 |
* **Input:** Text string, such as a question, a prompt, or a document to be
|
|
|
43 |
|
44 |
### Usage
|
45 |
|
46 |
+
Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
|
47 |
+
```sh
|
48 |
+
pip install -U transformers
|
49 |
+
```
|
50 |
|
51 |
+
Then, copy the snippet from the section that is relevant for your usecase.
|
52 |
|
53 |
+
#### Running with the `pipeline` API
|
54 |
|
55 |
```python
|
|
|
|
|
56 |
import torch
|
57 |
+
from transformers import pipeline
|
58 |
|
59 |
+
pipe = pipeline(
|
60 |
+
"text-generation",
|
61 |
+
model="google/gemma-2-9b",
|
62 |
+
device="cuda", # replace with "mps" to run on a Mac device
|
|
|
63 |
)
|
64 |
|
65 |
+
text = "Once upon a time,"
|
66 |
+
outputs = pipe(text, max_new_tokens=256)
|
67 |
+
response = outputs[0]["generated_text"]
|
68 |
+
print(response)
|
|
|
69 |
```
|
70 |
|
71 |
+
#### Running the model on a single / multi GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
```python
|
74 |
# pip install accelerate
|
|
|
79 |
model = AutoModelForCausalLM.from_pretrained(
|
80 |
"google/gemma-2-9b",
|
81 |
device_map="auto",
|
|
|
|
|
82 |
)
|
83 |
|
84 |
input_text = "Write me a poem about Machine Learning."
|
85 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
86 |
|
87 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
88 |
print(tokenizer.decode(outputs[0]))
|
89 |
```
|
90 |
|
91 |
+
#### Running the model through a CLI
|
92 |
|
93 |
+
The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
|
94 |
+
for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
|
95 |
+
for getting started, then launch the CLI through the following command:
|
96 |
|
97 |
+
```shell
|
98 |
+
local-gemma --model "google/gemma-2-9b" --prompt "What is the capital of Mexico?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
```
|
100 |
|
101 |
#### Quantized Versions through `bitsandbytes`
|
102 |
|
103 |
+
<details>
|
104 |
+
<summary>
|
105 |
+
Using 8-bit precision (int8)
|
106 |
+
</summary>
|
107 |
|
108 |
```python
|
109 |
# pip install bitsandbytes accelerate
|
|
|
114 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
115 |
model = AutoModelForCausalLM.from_pretrained(
|
116 |
"google/gemma-2-9b",
|
117 |
+
quantization_config=quantization_config,
|
118 |
+
)
|
119 |
|
120 |
input_text = "Write me a poem about Machine Learning."
|
121 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
122 |
|
123 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
124 |
print(tokenizer.decode(outputs[0]))
|
125 |
```
|
126 |
+
</details>
|
127 |
|
128 |
+
<details>
|
129 |
+
<summary>
|
130 |
+
Using 4-bit precision
|
131 |
+
</summary>
|
132 |
|
133 |
```python
|
134 |
# pip install bitsandbytes accelerate
|
|
|
139 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
140 |
model = AutoModelForCausalLM.from_pretrained(
|
141 |
"google/gemma-2-9b",
|
142 |
+
quantization_config=quantization_config,
|
143 |
+
)
|
144 |
|
145 |
input_text = "Write me a poem about Machine Learning."
|
146 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
147 |
|
148 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
149 |
print(tokenizer.decode(outputs[0]))
|
150 |
```
|
151 |
+
</details>
|
152 |
|
153 |
+
#### Advanced Usage
|
154 |
|
155 |
+
<details>
|
156 |
+
<summary>
|
157 |
+
Torch compile
|
158 |
+
</summary>
|
159 |
|
160 |
+
[Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
|
161 |
+
inference of PyTorch modules. The Gemma-2 model can be run up to 6x faster by leveraging torch compile.
|
162 |
|
163 |
+
Note that two warm-up steps are required before the full inference speed is realised:
|
164 |
|
165 |
+
```python
|
166 |
+
import os
|
167 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
168 |
+
|
169 |
+
from transformers import AutoTokenizer, Gemma2ForCausalLM
|
170 |
+
from transformers.cache_utils import HybridCache
|
171 |
+
import torch
|
172 |
+
|
173 |
+
torch.set_float32_matmul_precision("high")
|
174 |
+
|
175 |
+
# load the model + tokenizer
|
176 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
177 |
+
model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-9b", torch_dtype=torch.bfloat16)
|
178 |
+
model.to("cuda")
|
179 |
+
|
180 |
+
# apply the torch compile transformation
|
181 |
+
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
182 |
+
|
183 |
+
# pre-process inputs
|
184 |
+
input_text = "The theory of special relativity states "
|
185 |
+
model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
186 |
+
prompt_length = model_inputs.input_ids.shape[1]
|
187 |
+
|
188 |
+
# set-up k/v cache
|
189 |
+
past_key_values = HybridCache(
|
190 |
+
config=model.config,
|
191 |
+
max_batch_size=1,
|
192 |
+
max_cache_len=model.config.max_position_embeddings,
|
193 |
+
device=model.device,
|
194 |
+
dtype=model.dtype
|
195 |
+
)
|
196 |
+
|
197 |
+
# enable passing kv cache to generate
|
198 |
+
model._supports_cache_class = True
|
199 |
+
model.generation_config.cache_implementation = None
|
200 |
+
|
201 |
+
# two warm-up steps
|
202 |
+
for idx in range(2):
|
203 |
+
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
204 |
+
past_key_values.reset()
|
205 |
+
|
206 |
+
# fast run
|
207 |
+
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
208 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
209 |
```
|
210 |
|
211 |
+
For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
|
212 |
+
|
213 |
+
</details>
|
214 |
+
|
215 |
### Inputs and outputs
|
216 |
|
217 |
* **Input:** Text string, such as a question, a prompt, or a document to be
|
tokenizer.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f289bc05132635a8bc7aca7aa21255efd5e18f3710f43e3cdb96bcd41be4922
|
3 |
+
size 17525357
|
tokenizer_config.json
CHANGED
@@ -1737,6 +1737,262 @@
|
|
1737 |
"rstrip": false,
|
1738 |
"single_word": false,
|
1739 |
"special": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1740 |
}
|
1741 |
},
|
1742 |
"additional_special_tokens": [
|
|
|
1737 |
"rstrip": false,
|
1738 |
"single_word": false,
|
1739 |
"special": false
|
1740 |
+
},
|
1741 |
+
"255968": {
|
1742 |
+
"content": "[toxicity=0]",
|
1743 |
+
"lstrip": false,
|
1744 |
+
"normalized": false,
|
1745 |
+
"rstrip": false,
|
1746 |
+
"single_word": false,
|
1747 |
+
"special": false
|
1748 |
+
},
|
1749 |
+
"255969": {
|
1750 |
+
"content": "\t\t",
|
1751 |
+
"lstrip": false,
|
1752 |
+
"normalized": false,
|
1753 |
+
"rstrip": false,
|
1754 |
+
"single_word": false,
|
1755 |
+
"special": false
|
1756 |
+
},
|
1757 |
+
"255970": {
|
1758 |
+
"content": "\t\t\t",
|
1759 |
+
"lstrip": false,
|
1760 |
+
"normalized": false,
|
1761 |
+
"rstrip": false,
|
1762 |
+
"single_word": false,
|
1763 |
+
"special": false
|
1764 |
+
},
|
1765 |
+
"255971": {
|
1766 |
+
"content": "\t\t\t\t",
|
1767 |
+
"lstrip": false,
|
1768 |
+
"normalized": false,
|
1769 |
+
"rstrip": false,
|
1770 |
+
"single_word": false,
|
1771 |
+
"special": false
|
1772 |
+
},
|
1773 |
+
"255972": {
|
1774 |
+
"content": "\t\t\t\t\t",
|
1775 |
+
"lstrip": false,
|
1776 |
+
"normalized": false,
|
1777 |
+
"rstrip": false,
|
1778 |
+
"single_word": false,
|
1779 |
+
"special": false
|
1780 |
+
},
|
1781 |
+
"255973": {
|
1782 |
+
"content": "\t\t\t\t\t\t",
|
1783 |
+
"lstrip": false,
|
1784 |
+
"normalized": false,
|
1785 |
+
"rstrip": false,
|
1786 |
+
"single_word": false,
|
1787 |
+
"special": false
|
1788 |
+
},
|
1789 |
+
"255974": {
|
1790 |
+
"content": "\t\t\t\t\t\t\t",
|
1791 |
+
"lstrip": false,
|
1792 |
+
"normalized": false,
|
1793 |
+
"rstrip": false,
|
1794 |
+
"single_word": false,
|
1795 |
+
"special": false
|
1796 |
+
},
|
1797 |
+
"255975": {
|
1798 |
+
"content": "\t\t\t\t\t\t\t\t",
|
1799 |
+
"lstrip": false,
|
1800 |
+
"normalized": false,
|
1801 |
+
"rstrip": false,
|
1802 |
+
"single_word": false,
|
1803 |
+
"special": false
|
1804 |
+
},
|
1805 |
+
"255976": {
|
1806 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
1807 |
+
"lstrip": false,
|
1808 |
+
"normalized": false,
|
1809 |
+
"rstrip": false,
|
1810 |
+
"single_word": false,
|
1811 |
+
"special": false
|
1812 |
+
},
|
1813 |
+
"255977": {
|
1814 |
+
"content": "\t\t\t\t\t\t\t\t\t\t",
|
1815 |
+
"lstrip": false,
|
1816 |
+
"normalized": false,
|
1817 |
+
"rstrip": false,
|
1818 |
+
"single_word": false,
|
1819 |
+
"special": false
|
1820 |
+
},
|
1821 |
+
"255978": {
|
1822 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t",
|
1823 |
+
"lstrip": false,
|
1824 |
+
"normalized": false,
|
1825 |
+
"rstrip": false,
|
1826 |
+
"single_word": false,
|
1827 |
+
"special": false
|
1828 |
+
},
|
1829 |
+
"255979": {
|
1830 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t",
|
1831 |
+
"lstrip": false,
|
1832 |
+
"normalized": false,
|
1833 |
+
"rstrip": false,
|
1834 |
+
"single_word": false,
|
1835 |
+
"special": false
|
1836 |
+
},
|
1837 |
+
"255980": {
|
1838 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1839 |
+
"lstrip": false,
|
1840 |
+
"normalized": false,
|
1841 |
+
"rstrip": false,
|
1842 |
+
"single_word": false,
|
1843 |
+
"special": false
|
1844 |
+
},
|
1845 |
+
"255981": {
|
1846 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1847 |
+
"lstrip": false,
|
1848 |
+
"normalized": false,
|
1849 |
+
"rstrip": false,
|
1850 |
+
"single_word": false,
|
1851 |
+
"special": false
|
1852 |
+
},
|
1853 |
+
"255982": {
|
1854 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1855 |
+
"lstrip": false,
|
1856 |
+
"normalized": false,
|
1857 |
+
"rstrip": false,
|
1858 |
+
"single_word": false,
|
1859 |
+
"special": false
|
1860 |
+
},
|
1861 |
+
"255983": {
|
1862 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1863 |
+
"lstrip": false,
|
1864 |
+
"normalized": false,
|
1865 |
+
"rstrip": false,
|
1866 |
+
"single_word": false,
|
1867 |
+
"special": false
|
1868 |
+
},
|
1869 |
+
"255984": {
|
1870 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1871 |
+
"lstrip": false,
|
1872 |
+
"normalized": false,
|
1873 |
+
"rstrip": false,
|
1874 |
+
"single_word": false,
|
1875 |
+
"special": false
|
1876 |
+
},
|
1877 |
+
"255985": {
|
1878 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1879 |
+
"lstrip": false,
|
1880 |
+
"normalized": false,
|
1881 |
+
"rstrip": false,
|
1882 |
+
"single_word": false,
|
1883 |
+
"special": false
|
1884 |
+
},
|
1885 |
+
"255986": {
|
1886 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1887 |
+
"lstrip": false,
|
1888 |
+
"normalized": false,
|
1889 |
+
"rstrip": false,
|
1890 |
+
"single_word": false,
|
1891 |
+
"special": false
|
1892 |
+
},
|
1893 |
+
"255987": {
|
1894 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1895 |
+
"lstrip": false,
|
1896 |
+
"normalized": false,
|
1897 |
+
"rstrip": false,
|
1898 |
+
"single_word": false,
|
1899 |
+
"special": false
|
1900 |
+
},
|
1901 |
+
"255988": {
|
1902 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1903 |
+
"lstrip": false,
|
1904 |
+
"normalized": false,
|
1905 |
+
"rstrip": false,
|
1906 |
+
"single_word": false,
|
1907 |
+
"special": false
|
1908 |
+
},
|
1909 |
+
"255989": {
|
1910 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1911 |
+
"lstrip": false,
|
1912 |
+
"normalized": false,
|
1913 |
+
"rstrip": false,
|
1914 |
+
"single_word": false,
|
1915 |
+
"special": false
|
1916 |
+
},
|
1917 |
+
"255990": {
|
1918 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1919 |
+
"lstrip": false,
|
1920 |
+
"normalized": false,
|
1921 |
+
"rstrip": false,
|
1922 |
+
"single_word": false,
|
1923 |
+
"special": false
|
1924 |
+
},
|
1925 |
+
"255991": {
|
1926 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1927 |
+
"lstrip": false,
|
1928 |
+
"normalized": false,
|
1929 |
+
"rstrip": false,
|
1930 |
+
"single_word": false,
|
1931 |
+
"special": false
|
1932 |
+
},
|
1933 |
+
"255992": {
|
1934 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1935 |
+
"lstrip": false,
|
1936 |
+
"normalized": false,
|
1937 |
+
"rstrip": false,
|
1938 |
+
"single_word": false,
|
1939 |
+
"special": false
|
1940 |
+
},
|
1941 |
+
"255993": {
|
1942 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1943 |
+
"lstrip": false,
|
1944 |
+
"normalized": false,
|
1945 |
+
"rstrip": false,
|
1946 |
+
"single_word": false,
|
1947 |
+
"special": false
|
1948 |
+
},
|
1949 |
+
"255994": {
|
1950 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1951 |
+
"lstrip": false,
|
1952 |
+
"normalized": false,
|
1953 |
+
"rstrip": false,
|
1954 |
+
"single_word": false,
|
1955 |
+
"special": false
|
1956 |
+
},
|
1957 |
+
"255995": {
|
1958 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1959 |
+
"lstrip": false,
|
1960 |
+
"normalized": false,
|
1961 |
+
"rstrip": false,
|
1962 |
+
"single_word": false,
|
1963 |
+
"special": false
|
1964 |
+
},
|
1965 |
+
"255996": {
|
1966 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1967 |
+
"lstrip": false,
|
1968 |
+
"normalized": false,
|
1969 |
+
"rstrip": false,
|
1970 |
+
"single_word": false,
|
1971 |
+
"special": false
|
1972 |
+
},
|
1973 |
+
"255997": {
|
1974 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1975 |
+
"lstrip": false,
|
1976 |
+
"normalized": false,
|
1977 |
+
"rstrip": false,
|
1978 |
+
"single_word": false,
|
1979 |
+
"special": false
|
1980 |
+
},
|
1981 |
+
"255998": {
|
1982 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1983 |
+
"lstrip": false,
|
1984 |
+
"normalized": false,
|
1985 |
+
"rstrip": false,
|
1986 |
+
"single_word": false,
|
1987 |
+
"special": false
|
1988 |
+
},
|
1989 |
+
"255999": {
|
1990 |
+
"content": "<unused99>",
|
1991 |
+
"lstrip": false,
|
1992 |
+
"normalized": false,
|
1993 |
+
"rstrip": false,
|
1994 |
+
"single_word": false,
|
1995 |
+
"special": false
|
1996 |
}
|
1997 |
},
|
1998 |
"additional_special_tokens": [
|