Fine-tuned LVBERT for multi-label emotion classification task.
Model was trained on lv_go_emotions dataset. This dataset is Latvian translation of GoEmotions dataset. Google Translate was used to generate the machine translation.
Labels:
0: admiration
1: amusement
2: anger
3: annoyance
4: approval
5: caring
6: confusion
7: curiosity
8: desire
9: disappointment
10: disapproval
11: disgust
12: embarrassment
13: excitement
14: fear
15: gratitude
16: grief
17: joy
18: love
19: nervousness
20: optimism
21: pride
22: realization
23: relief
24: remorse
25: sadness
26: surprise
27: neutral
Seed used for random number generator is 42:
def set_seed(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
Training parameters:
max_length: null
batch_size: 32
shuffle: True
num_workers: 2
pin_memory: False
drop_last: False
optimizer: adam
lr: 0.00001
weight_decay: 0
problem_type: multi_label_classification
num_epochs: 5
Evaluation results on test split of lv_go_emotions
Precision | Recall | F1-Score | AUC-ROC | Support | |
---|---|---|---|---|---|
admiration | 0.64 | 0.64 | 0.64 | 0.92 | 504 |
amusement | 0.76 | 0.85 | 0.80 | 0.96 | 264 |
anger | 0.51 | 0.21 | 0.29 | 0.86 | 198 |
annoyance | 0.49 | 0.15 | 0.23 | 0.78 | 320 |
approval | 0.35 | 0.33 | 0.34 | 0.80 | 351 |
caring | 0.43 | 0.39 | 0.41 | 0.89 | 135 |
confusion | 0.53 | 0.33 | 0.41 | 0.94 | 153 |
curiosity | 0.49 | 0.42 | 0.45 | 0.94 | 284 |
desire | 0.63 | 0.37 | 0.47 | 0.92 | 83 |
disappointment | 0.45 | 0.11 | 0.18 | 0.82 | 151 |
disapproval | 0.45 | 0.25 | 0.32 | 0.84 | 267 |
disgust | 0.63 | 0.29 | 0.40 | 0.92 | 123 |
embarrassment | 0.50 | 0.14 | 0.21 | 0.85 | 37 |
excitement | 0.55 | 0.16 | 0.24 | 0.89 | 103 |
fear | 0.65 | 0.58 | 0.61 | 0.95 | 78 |
gratitude | 0.88 | 0.91 | 0.90 | 0.99 | 352 |
grief | 0.00 | 0.00 | 0.00 | 0.78 | 6 |
joy | 0.61 | 0.39 | 0.47 | 0.93 | 161 |
love | 0.80 | 0.69 | 0.74 | 0.97 | 238 |
nervousness | 0.00 | 0.00 | 0.00 | 0.95 | 23 |
optimism | 0.57 | 0.47 | 0.52 | 0.90 | 186 |
pride | 0.00 | 0.00 | 0.00 | 0.73 | 16 |
realization | 0.29 | 0.08 | 0.13 | 0.76 | 145 |
relief | 0.00 | 0.00 | 0.00 | 0.85 | 11 |
remorse | 0.54 | 0.68 | 0.60 | 0.98 | 56 |
sadness | 0.60 | 0.50 | 0.54 | 0.93 | 156 |
surprise | 0.65 | 0.41 | 0.50 | 0.92 | 141 |
neutral | 0.67 | 0.50 | 0.57 | 0.81 | 1787 |
micro avg | 0.62 | 0.46 | 0.53 | 0.93 | 6329 |
macro avg | 0.49 | 0.35 | 0.39 | 0.88 | 6329 |
weighted avg | 0.60 | 0.46 | 0.51 | 0.87 | 6329 |
samples avg | 0.52 | 0.48 | 0.49 | nan | 6329 |
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.