File size: 13,639 Bytes
cfdb374 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d4af41fd480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4af41fd510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4af41fd5a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4af41fd630>", "_build": "<function ActorCriticPolicy._build at 0x7d4af41fd6c0>", "forward": "<function ActorCriticPolicy.forward at 0x7d4af41fd750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4af41fd7e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4af41fd870>", "_predict": "<function ActorCriticPolicy._predict at 0x7d4af41fd900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4af41fd990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4af41fda20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4af41fdab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d4af41a3d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702072149097661171, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbFH77Z0Ic/ilfRvjED9L49EmS+A5CNvgAAAAAAAAAAc9yIPRQgw7oXRoS94b06PTkbQrzPyh0+AACAPwAAgD8AKFq7uFyhu1iyh7s1H5A8VmjhPIBNdb0AAIA/AACAP2bh670oUug+/U++Pp6V2r5NPa893PM+PgAAAAAAAAAAzV4tPQWf8zw4LhO+CjJNvqv+lr1sWiO9AAAAAAAAAAAARjC8ut4aP2unPD6bRLa+172ovB2ebj4AAAAAAAAAAICKaj3DyRG6YNU/PRkZW7UQAMC6gmpctAAAgD8AAIA/gMl5PUPCKbx9vV+8lI1qPPickT1MvUO9AACAPwAAgD8zt6s8F95sP8OmfT0bDwG/1uAaPZZn5zwAAAAAAAAAAM0ME7qPOh66+YMnPWpFxTuch7q77T2sPAAAgD8AAIA/AGwrvT+AVz/58QQ+JjTzvndMF74l1dA9AAAAAAAAAACNDJM9jyn4PgGDr7w1e8G+y7OPO9Ix5TwAAAAAAAAAACb4xz1z444/kF5ZPkBMHr+Guw8+omcHPgAAAAAAAAAAGsQ5vepHeD42vzU+LrGpvrDzvj20HD08AAAAAAAAAADNfUy9cZpju0qKnD0klog8tpuivLJOaj0AAIA/AACAP21xAj7fDFs/3xNMPjkxCr8ac0U+yaGZvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH2NuDSPU+MAWyUS9mMAXSUR0DKOVG27Wd3dX2UKGgGR0BxSS+lCTllaAdLxmgIR0DKOVMgMc6vdX2UKGgGR0B0bSkbgjyGaAdL4GgIR0DKOV25J9RadX2UKGgGR0ByPWeqaPS2aAdL92gIR0DKOW4s3AEddX2UKGgGR0BwkAiHIp6QaAdNAQFoCEdAyjl0t9QXRHV9lChoBkdAcmcU9ZA6dWgHS+5oCEdAyjmEmNR3vHV9lChoBkdAbif2q1gH/2gHS9JoCEdAyjmSNOuaF3V9lChoBkdAcOX0QbuMM2gHS8xoCEdAyjmYIQe3hHV9lChoBkdAcmSYsunMuGgHTSMBaAhHQMo5no9C/oJ1fZQoaAZHQHFgxr8BMi9oB00RAWgIR0DKObCQ9zOpdX2UKGgGR0BwWWSSvC/HaAdLxmgIR0DKOb+fXf65dX2UKGgGR0Bwwtn3+MqCaAdLvWgIR0DKOcO5c1O1dX2UKGgGR0BxO7Aj6eoUaAdL+WgIR0DKOdJJZntfdX2UKGgGR0ByYnGYKIBSaAdL7mgIR0DKOeJ7RfF8dX2UKGgGR0BxdyHzpX6qaAdL+mgIR0DKOfAlKK51dX2UKGgGR0BwVlzvJA+qaAdLzmgIR0DKOfFrTH81dX2UKGgGR0BwvI2bXpW4aAdL9GgIR0DKOfwn+hoNdX2UKGgGR0BxlDCyhSLqaAdL0WgIR0DKOhEUfxMGdX2UKGgGR0BxHCjzqbBoaAdL92gIR0DKOhIQL/jsdX2UKGgGR0BxrkyM1jy4aAdL0GgIR0DKOhc25xzadX2UKGgGR0Btyaa/h2nsaAdLzWgIR0DKOjpl6JIldX2UKGgGR0BzEuLpA2Q5aAdNHgFoCEdAyjo99Q40dnV9lChoBkdAc9LHoouwo2gHS+loCEdAyjpLycTakHV9lChoBkdAcfq5+H8CP2gHS/xoCEdAyjpMYMvysnV9lChoBkdAb+kJYT0xumgHS+VoCEdAyjpUxkd3jnV9lChoBkdAcWlQhOgxrWgHS8FoCEdAyjpd0J4SpXV9lChoBkdAcAYzposZpGgHS95oCEdAyjphtALRbHV9lChoBkdAcYlfaYeDF2gHS8hoCEdAyj2RrrPdEnV9lChoBkdAcCjWhysCDGgHS9poCEdAyj2RYh+vyXV9lChoBkdAb45Q5WBBiWgHTQkBaAhHQMo9ogWJrL11fZQoaAZHQG+6hF3IMjNoB0vWaAhHQMo9tcifQKN1fZQoaAZHQHC807jkuHxoB0voaAhHQMo9t47aIvd1fZQoaAZHQHNkfqTr3TNoB0vGaAhHQMo9vl9roGJ1fZQoaAZHQHO8l1jiGWVoB0vVaAhHQMo9yOJ1q351fZQoaAZHQHMLyUTtb9toB0v/aAhHQMo9yrBKtgd1fZQoaAZHQHF7ALiMo+hoB0vPaAhHQMo9yrowEhd1fZQoaAZHQHHe00Jng51oB0vCaAhHQMo93kU9IPN1fZQoaAZHQHJUKEvkBCFoB0vBaAhHQMo94GiHqNZ1fZQoaAZHQHPFIrWiDdxoB0vMaAhHQMo9/6YE4ed1fZQoaAZHQHDVDs2NvO1oB0vqaAhHQMo+DhpYcNp1fZQoaAZHQHCeJKSPluFoB0vSaAhHQMo+EFXzUZx1fZQoaAZHQHGmo+0PYnRoB0vzaAhHQMo+FJ/XoTx1fZQoaAZHQHKIDtTkyUNoB0vfaAhHQMo+Fjb8FZB1fZQoaAZHQFM14tHxz7xoB0u2aAhHQMo+GjLB9Cx1fZQoaAZHQHBX8/lhgE5oB0vTaAhHQMo+LPKEFnt1fZQoaAZHQHLYhB/qgRNoB0vFaAhHQMo+TResxPB1fZQoaAZHQHC6snJDE3toB0vYaAhHQMo+ViaRZEF1fZQoaAZHQHHJ5aaCtihoB0vbaAhHQMo+Vp3HJcR1fZQoaAZHQG3iFrEcbR5oB0vKaAhHQMo+W2cawUx1fZQoaAZHQHIkhXjlxOtoB0vJaAhHQMo+XfAbhm51fZQoaAZHQHK2dRNyo4xoB0vSaAhHQMo+Y4WLxZx1fZQoaAZHQHJaANG3F1loB00RAWgIR0DKPmu58Sf2dX2UKGgGR0ByyTej2zv7aAdLwmgIR0DKPm/mvGIbdX2UKGgGR0Bzc0tsenyeaAdL3GgIR0DKPn/Ot4iYdX2UKGgGR0Bwr6TpxFRYaAdLy2gIR0DKPpROWSlndX2UKGgGR0BxyvSKFZgYaAdLz2gIR0DKPqT0jC53dX2UKGgGR0BwEEr8R+SbaAdL2GgIR0DKPq7ebd8BdX2UKGgGR0Bw/WIgvDgqaAdL22gIR0DKPrpZwGW2dX2UKGgGR0BydUdgfEGaaAdL32gIR0DKPro5xR2sdX2UKGgGR0BzCv+hoM8YaAdL8mgIR0DKPsZk078vdX2UKGgGR0BR7R99c8klaAdLrGgIR0DKPtzXvphXdX2UKGgGR0ByDFmAbyYpaAdL7WgIR0DKPt2USqVAdX2UKGgGR0BzZ030f5k9aAdLxGgIR0DKPvAyTINmdX2UKGgGR0Bw8NWtEG7jaAdL02gIR0DKPvaLOzIFdX2UKGgGR0Bx0M+EAYHgaAdLx2gIR0DKPvr655JLdX2UKGgGR0BxhIkrwvxpaAdL7mgIR0DKPwOPHT7VdX2UKGgGR0BwhjqY7aIvaAdL6WgIR0DKPwgeHSF5dX2UKGgGR0Byj6jSG8EnaAdL5WgIR0DKPxiiTMaCdX2UKGgGR0By5qOLiuMdaAdL6mgIR0DKPzSInBtUdX2UKGgGR0Bwo8OLBKtgaAdNDAFoCEdAyj8+qFRHgHV9lChoBkdAcRHpSJj2BmgHS+hoCEdAyj9JlmvnsHV9lChoBkdAc7Ti2DxsmGgHS71oCEdAyj9OzE74jHV9lChoBkdAcQA+fAbhnGgHS8hoCEdAyj9YTgVGkXV9lChoBkdAbm+MYuTRpmgHS+toCEdAyj9nWjoIOnV9lChoBkdAbpXmknCwbGgHS8poCEdAyj9nNSqEOHV9lChoBkdAcIenGKhtcmgHS/toCEdAyj9qHNX5nHV9lChoBkdAc041wo9cKWgHS8toCEdAyj9+EGJN03V9lChoBkdAct/xTKkl/2gHS71oCEdAyj+MgezUqnV9lChoBkdAblJUd7v5QGgHS8poCEdAyj+RaM72c3V9lChoBkdAclARu0kWymgHS+VoCEdAyj+VR1HOKXV9lChoBkdAbpGilBQem2gHS81oCEdAyj+smZVn3HV9lChoBkdAb9bNC7btZ2gHS+FoCEdAyj+vnK4hEHV9lChoBkdAcN9cJdB0IWgHS8poCEdAyj+9OSGJvnV9lChoBkdAcOk+WGATZmgHS/xoCEdAyj/LfTCtR3V9lChoBkdAblktf5ULlWgHS9xoCEdAyj/l9l2/z3V9lChoBkdAc4Y9lEqlQGgHS+doCEdAyj/3gTAWSHV9lChoBkdAcxKShrWRR2gHS8loCEdAyj/6OjqOcXV9lChoBkdAcFQR5C4SYmgHS9toCEdAyj/52GIsRXV9lChoBkdAcwkBWxQizWgHS95oCEdAykAA9PDYRXV9lChoBkdAc1WI/Z/Tb2gHS8loCEdAykAI9Oh0yXV9lChoBkdAcD3DRc/t6WgHS8doCEdAykAKIdlunHV9lChoBkdAc7CvvjOs1mgHS/poCEdAykAssz2vjnV9lChoBkdAcmb1/Ue+22gHS9ZoCEdAykA1FfiPyXV9lChoBkdAceI9sabWmWgHS8xoCEdAykBM814xDnV9lChoBkdAci0z06HTJGgHS+5oCEdAykBRrvb48HV9lChoBkdAcYJXfqHGj2gHS/poCEdAykBYXenAI3V9lChoBkdAcXPsr/bTMWgHS+1oCEdAykBrmq5sj3V9lChoBkdAcspOG0u14WgHS9toCEdAykBrbsWweXV9lChoBkdAbiHXzUZvUGgHTScBaAhHQMpAbFcpsoF1fZQoaAZHQHDwxaC+UQloB0vaaAhHQMpAeCW3Sa51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |