Scikit-learn with Iris Dataset
This repository uses Scikit-learn for classification on the Iris dataset. The model used is a Logistic Regression model.
The Iris dataset is a multivariate data set introduced by the British statistician and biologist Ronald Fisher in his 1936 paper. The data set consists of 50 samples from each of three species of Iris flowers (Iris setosa, Iris virginica and Iris versicolor). Four features were measured from each sample: the lengths and the widths of the sepals and petals.
The training and evaluation process is done using Scikit-learn, a free software machine learning library for the Python programming language. It features various classification, regression and clustering algorithms.
Classification Report
precision recall f1-score support
0 1.00 1.00 1.00 12
1 1.00 1.00 1.00 10
2 1.00 1.00 1.00 8
accuracy 1.00 30
macro avg 1.00 1.00 1.00 30
weighted avg 1.00 1.00 1.00 30
Usage
This model has the following instructions for use.
# pip install scikit-learn
# pip install joblib
# pip install huggingface_hub
import joblib
from huggingface_hub import snapshot_download
model_path = snapshot_download("SoAp9035/iris-perfect")
model = joblib.load(model_path + "/iris_perfect.pkl")
print(model.predict([[5.9,3.3,3.9,1.1]]))
# [1]
0 - Iris Setosa | 1 - Iris Versicolour | 2 - Iris Virginica
Hyperparameters
{'C': 1.0,
'class_weight': None,
'dual': False,
'fit_intercept': True,
'intercept_scaling': 1,
'l1_ratio': None,
'max_iter': 100,
'multi_class': 'auto',
'n_jobs': None,
'penalty': 'l2',
'random_state': None,
'solver': 'lbfgs',
'tol': 0.0001,
'verbose': 0,
'warm_start': False}