lenu_PL / README.md
aarimond's picture
Update README.md
08b25f6 verified
|
raw
history blame
16.6 kB
metadata
library_name: sklearn
tags:
  - sklearn
  - skops
  - tabular-classification
model_format: pickle
model_file: model.joblib

Model description

[More Information Needed]

Intended uses & limitations

[More Information Needed]

Training Procedure

Hyperparameters

The model is trained with below hyperparameters.

Click to expand
Hyperparameter Value
memory
steps [('feature_extraction', ColumnTransformer(transformers=[('abbreviations',
<__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>,
0),
('tokenizer',
CountVectorizer(binary=True, lowercase=False,
tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>),
0)])), ('classifier', ComplementNB())]
verbose False
feature_extraction ColumnTransformer(transformers=[('abbreviations',
<__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>,
0),
('tokenizer',
CountVectorizer(binary=True, lowercase=False,
tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>),
0)])
classifier ComplementNB()
feature_extraction__n_jobs
feature_extraction__remainder drop
feature_extraction__sparse_threshold 0.3
feature_extraction__transformer_weights
feature_extraction__transformers [('abbreviations', <__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>, 0), ('tokenizer', CountVectorizer(binary=True, lowercase=False,
tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>), 0)]
feature_extraction__verbose False
feature_extraction__verbose_feature_names_out True
feature_extraction__abbreviations <__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>
feature_extraction__tokenizer CountVectorizer(binary=True, lowercase=False,
tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>)
feature_extraction__abbreviations__elf_abbreviations <__main__.ELFAbbreviations object at 0x7f38f438b670>
feature_extraction__abbreviations__jurisdiction PL
feature_extraction__abbreviations__use_endswith True
feature_extraction__abbreviations__use_lowercasing True
feature_extraction__tokenizer__analyzer word
feature_extraction__tokenizer__binary True
feature_extraction__tokenizer__decode_error strict
feature_extraction__tokenizer__dtype <class 'numpy.int64'>
feature_extraction__tokenizer__encoding utf-8
feature_extraction__tokenizer__input content
feature_extraction__tokenizer__lowercase False
feature_extraction__tokenizer__max_df 1.0
feature_extraction__tokenizer__max_features
feature_extraction__tokenizer__min_df 1
feature_extraction__tokenizer__ngram_range (1, 1)
feature_extraction__tokenizer__preprocessor
feature_extraction__tokenizer__stop_words
feature_extraction__tokenizer__strip_accents
feature_extraction__tokenizer__token_pattern (?u)\b\w\w+\b
feature_extraction__tokenizer__tokenizer <__main__.LegalEntityTokenizer object at 0x7f38e082ee50>
feature_extraction__tokenizer__vocabulary
classifier__alpha 1.0
classifier__class_prior
classifier__fit_prior True
classifier__norm False

Model Plot

The model plot is below.

Pipeline(steps=[('feature_extraction',ColumnTransformer(transformers=[('abbreviations',<__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>,0),('tokenizer',CountVectorizer(binary=True,lowercase=False,tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>),0)])),('classifier', ComplementNB())])
Please rerun this cell to show the HTML repr or trust the notebook.

Evaluation Results

You can find the details about evaluation process and the evaluation results.

Metric Value
f1 0.971647
f1 macro 0.522164

How to Get Started with the Model

[More Information Needed]

Model Card Authors

This model card is written by following authors:

[More Information Needed]

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

[More Information Needed]