|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
# OFA-tiny |
|
|
|
## Introduction |
|
This is the **tiny** version of OFA pretrained model finetuned on CLEVR and a custom block stack dataset. |
|
|
|
The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights. |
|
|
|
|
|
## How to use |
|
Download the models as shown below. |
|
```bash |
|
git clone https://github.com/sohananisetty/OFA_VQA.git |
|
git clone https://huggingface.co/SohanAnisetty/ofa-vqa-base |
|
``` |
|
|
|
After, refer the path to ofa-vqa-base to `ckpt_dir`, and prepare an image for the testing example below. |
|
|
|
```python |
|
from PIL import Image |
|
from torchvision import transforms |
|
from transformers import OFATokenizer, OFAModelForVQA |
|
|
|
mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] |
|
resolution = 480 |
|
patch_resize_transform = transforms.Compose([ |
|
lambda image: image.convert("RGB"), |
|
transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=mean, std=std) |
|
]) |
|
|
|
|
|
tokenizer = OFATokenizer.from_pretrained(ckpt_dir) |
|
|
|
txt = " what does the image describe?" |
|
inputs = tokenizer([txt], return_tensors="pt").input_ids |
|
inputs = inputs.cuda() |
|
img = Image.open(path_to_image) |
|
patch_img = patch_resize_transform(img).unsqueeze(0).cuda() |
|
|
|
|
|
model = OFAModel.from_pretrained(ckpt_dir, use_cache=False).cuda() |
|
gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3) |
|
|
|
print(tokenizer.batch_decode(gen skip_special_tokens=True)) |
|
``` |
|
|