Edit model card

TrOCR-SIN-DeiT-Handwritten

This model is a fine-tuned version of kavg/TrOCR-SIN-DeiT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9839
  • Cer: 0.5253

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.2915 3.45 100 1.8613 0.6450
0.061 6.9 200 1.8118 0.5707
0.0363 10.34 300 2.3998 0.6420
0.0202 13.79 400 2.4144 0.6353
0.0329 17.24 500 2.4393 0.6577
0.0364 20.69 600 1.9231 0.5679
0.004 24.14 700 2.4344 0.5866
0.0167 27.59 800 3.0998 0.5744
0.0269 31.03 900 2.6785 0.5804
0.0151 34.48 1000 2.2443 0.5916
0.0008 37.93 1100 2.1480 0.5684
0.0067 41.38 1200 2.3553 0.5625
0.0198 44.83 1300 2.1915 0.5492
0.0002 48.28 1400 2.0370 0.5620
0.001 51.72 1500 2.4303 0.6056
0.1666 55.17 1600 2.3324 0.5627
0.0001 58.62 1700 2.8753 0.5582
0.0 62.07 1800 2.5749 0.5355
0.0002 65.52 1900 2.8105 0.5572
0.0 68.97 2000 2.5275 0.5462
0.1231 72.41 2100 2.7452 0.5477
0.0 75.86 2200 2.4278 0.5403
0.0 79.31 2300 3.0099 0.5487
0.0 82.76 2400 3.1290 0.5467
0.0 86.21 2500 2.7705 0.5263
0.0 89.66 2600 2.7828 0.5275
0.0 93.1 2700 3.2488 0.5345
0.0 96.55 2800 3.1309 0.5273
0.0 100.0 2900 2.9839 0.5253

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
46
Safetensors
Model size
241M params
Tensor type
F32
ยท
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for SriDoc/TrOCR-Sin-Handwritten

Finetuned
(4)
this model

Space using SriDoc/TrOCR-Sin-Handwritten 1