whisper-small-cn / README.md
Svetlana0303's picture
End of training
4f4436c verified
metadata
language:
  - cn
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Svetlana0303/my_CN_ds
metrics:
  - wer
model-index:
  - name: Whisper Small CN - my voice
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: my_CN_ds
          type: Svetlana0303/my_CN_ds
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 100

Whisper Small CN - my voice

This model is a fine-tuned version of openai/whisper-small on the my_CN_ds dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7879
  • Wer: 100.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0 100.0 100 0.7750 100.0
0.0 200.0 200 0.7819 100.0
0.0 300.0 300 0.7860 100.0
0.0 400.0 400 0.7879 100.0

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1