File size: 2,467 Bytes
e918e8b
 
749cb5f
 
 
 
 
 
 
 
 
e918e8b
 
e033d13
e918e8b
57e3428
 
2f8bb36
57e3428
cea0829
57e3428
2f8bb36
 
 
 
 
 
 
 
 
 
 
57e3428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e08d3a
57e3428
 
 
 
 
2bc4477
57e3428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
tags:
- medical
license: apache-2.0
datasets:
- SylvanL/Traditional-Chinese-Medicine-Dataset-SFT
language:
- zh
base_model:
- SylvanL/ChatTCM-7B-Pretrain
---

### 第二个epoch的模型&测试评估结果正在路上...

在2张V800-80G上, 

基于SylvanL/ChatTCM-7B-Pretrain, 在llamafactory框架上,

使用SylvanL/Traditional-Chinese-Medicine-Dataset-SFT进行了1个epoch的全参数量有监督微调(full Supervised Fine-tuning).


可选Instruction:
```
将输入的文言文/古文翻译成现代文。
基于输入的患者医案记录,直接给出你的证型诊断,无需给出原因。
基于输入的患者医案记录,直接给出你的疾病诊断,无需给出原因。
基于输入的患者医案记录,直接给出你认为的方剂中药组成。
基于输入的患者医案记录,直接给出你认为的【治疗方案】{可多选}∈["中药", "成药", "方剂"],和【诊断】{可多选}∈["证型", "治法", "西医诊断", "中医诊断"]:

```

```
epoch 1: 
    "epoch": 0.9999178959467966,
    "num_input_tokens_seen": 1649269888,
    "total_flos": 3298213988794368.0,
    "train_loss": 1.0691444667014194,
    "train_runtime": 587389.2072,
    "train_samples_per_second": 3.483,
    "train_steps_per_second": 0.016

```

```
llamafactory-cli train \
    --stage sft \
    --do_train True \
    --model_name_or_path {SylvanL/ChatTCM-7B-Pretrain} \
    --preprocessing_num_workers 16 \
    --finetuning_type full \
    --template default \
    --flash_attn auto \
    --dataset_dir {dataset_dir} \
    --dataset SFT_medicalKnowledge_source1_548404,SFT_medicalKnowledge_source2_99334,SFT_medicalKnowledge_source3_556540,SFT_nlpDiseaseDiagnosed_61486,SFT_nlpSyndromeDiagnosed_48665,SFT_structGeneral_310860,SFT_structPrescription_92896,SFT_external_traditionalTrans_7304,{BAAI/COIG},{m-a-p/COIG-CQIA} \
    --cutoff_len 1024 \
    --learning_rate 5e-05 \
    --num_train_epochs 1.0 \
    --max_samples 1000000 \
    --per_device_train_batch_size 28 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --max_grad_norm 1.0 \
    --logging_steps 1 \
    --save_steps 1000 \
    --warmup_steps 0 \
    --optim adamw_torch \
    --packing False \
    --report_to none \
    --output_dir {output_dir} \
    --bf16 True \
    --plot_loss True \
    --ddp_timeout 180000000 \
    --include_num_input_tokens_seen True \
    --deepspeed cache/ds_z3_offload_config.json

```