Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`

#27
by mdeniz1 - opened

I am using the code in the model car in colab with a100 gpu.
I have run pip install accelerate successfully but still I get the error message in the subject of this discussion:
Using low_cpu_mem_usage=True or a device_map requires Accelerate: pip install accelerate

This is an error that I keep getting for other models too. Somebody help me please.

import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda"

tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True)

query = 'describe the image'
image = Image.open("/content/drive/MyDrive/car.jpg").convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
add_generation_prompt=True, tokenize=True, return_tensors="pt",
return_dict=True) # chat mode

inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4v-9b",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()

gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))

Knowledge Engineering Group (KEG) & Data Mining at Tsinghua University org

just run pip install accelerate in command and install this package

in colab and probably in jupyter notebooks in general, restarting the kernel after pip install accelerate solves the problem
https://stackoverflow.com/questions/76902752/importerror-using-low-cpu-mem-usage-true-or-a-device-map-requires-accelerat

mdeniz1 changed discussion status to closed

Sign up or log in to comment