Edit model card

kyrgyzNER model (xlm-roberta-base) by The_Cramer_Project

This model is a fine-tuned version of xlm-roberta-base on the KyrgyzNER dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3273
  • Precision: 0.7090
  • Recall: 0.6946
  • F1: 0.7017
  • Accuracy: 0.9119

How to use

You can use this model with the Transformers pipeline for NER.

from transformers import AutoTokenizer, AutoModelForTokenClassification, AutoConfig
from transformers import pipeline

id2label = {
'LABEL_0': 'B-NATIONAL',
 'LABEL_1': 'I-PLANT',
 'LABEL_2': 'I-ORGANISATION',
 'LABEL_3': 'B-ORGANISATION',
 'LABEL_4': 'B-MEDIA',
 'LABEL_5': 'I-ARTIFACT',
 'LABEL_6': 'B-AWARD',
 'LABEL_7': 'B-UNKNOWN',
 'LABEL_8': 'I-LOCATION',
 'LABEL_9': 'B-PERSON',
 'LABEL_10': 'I-LEGAL',
 'LABEL_11': 'B-BUSINESS',
 'LABEL_12': 'B-ACRONYM',
 'LABEL_13': 'I-PERIOD',
 'LABEL_14': 'B-INSTITUTION',
 'LABEL_15': 'I-MEASURE',
 'LABEL_16': 'B-CREATION',
 'LABEL_17': 'I-ACRONYM',
 'LABEL_18': 'I-AWARD',
 'LABEL_19': 'I-WEBSITE',
 'LABEL_20': 'B-PERIOD',
 'LABEL_21': 'I-PERSON',
 'LABEL_22': 'I-PERSON_TYPE',
 'LABEL_23': 'B-SUBSTANCE',
 'LABEL_24': 'O',
 'LABEL_25': 'B-PLANT',
 'LABEL_26': 'I-INSTITUTION',
 'LABEL_27': 'I-SUBSTANCE',
 'LABEL_28': 'I-INSTALLATION',
 'LABEL_29': 'B-CONCEPT',
 'LABEL_30': 'B-TITLE',
 'LABEL_31': 'I-EVENT',
 'LABEL_32': 'B-ARTIFACT',
 'LABEL_33': 'B-MEASURE',
 'LABEL_34': 'B-LOCATION',
 'LABEL_35': 'I-BUSINESS',
 'LABEL_36': 'B-ANIMAL',
 'LABEL_37': 'B-PERSON_TYPE',
 'LABEL_38': 'B-INSTALLATION',
 'LABEL_39': 'I-TITLE',
 'LABEL_40': 'B-IDENTIFIER',
 'LABEL_41': 'I-IDENTIFIER',
 'LABEL_42': 'B-LEGAL',
 'LABEL_43': 'I-MEDIA',
 'LABEL_44': 'I-CONCEPT',
 'LABEL_45': 'I-UNKNOWN',
 'LABEL_46': 'B-EVENT',
 'LABEL_47': 'B-WEBSITE',
 'LABEL_48': 'I-NATIONAL',
 'LABEL_49': 'I-CREATION',
 'LABEL_50': 'I-ANIMAL'}

model_ckpt = "TTimur/xlm-roberta-base-kyrgyzNER"

config = AutoConfig.from_pretrained(model_ckpt)
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
model = AutoModelForTokenClassification.from_pretrained(model_ckpt, config = config)

# aggregation_strategy = "none"
nlp = pipeline("ner", model = model, tokenizer = tokenizer, aggregation_strategy = "none")

example = "Кыргызстан Орто Азиянын түндүк-чыгышында орун алган мамлекет."
ner_results = nlp(example)
for result in ner_results:
    result.update({'entity': id2label[result['entity']]})
    print(result)
    
# output:
# {'entity': 'B-LOCATION', 'score': 0.95103735, 'index': 1, 'word': '▁Кыргызстан', 'start': 0, 'end': 10}
# {'entity': 'B-LOCATION', 'score': 0.79447913, 'index': 2, 'word': '▁Ор', 'start': 11, 'end': 13}
# {'entity': 'I-LOCATION', 'score': 0.8703734, 'index': 3, 'word': 'то', 'start': 13, 'end': 15}
# {'entity': 'I-LOCATION', 'score': 0.942387, 'index': 4, 'word': '▁Азия', 'start': 16, 'end': 20}
# {'entity': 'I-LOCATION', 'score': 0.8542615, 'index': 5, 'word': 'нын', 'start': 20, 'end': 23}
# {'entity': 'I-LOCATION', 'score': 0.70930535, 'index': 6, 'word': '▁түн', 'start': 24, 'end': 27}
# {'entity': 'I-LOCATION', 'score': 0.6540094, 'index': 7, 'word': 'дүк', 'start': 27, 'end': 30}
# {'entity': 'I-LOCATION', 'score': 0.63446337, 'index': 8, 'word': '-', 'start': 30, 'end': 31}
# {'entity': 'I-LOCATION', 'score': 0.6204858, 'index': 9, 'word': 'чы', 'start': 31, 'end': 33}
# {'entity': 'I-LOCATION', 'score': 0.6786872, 'index': 10, 'word': 'г', 'start': 33, 'end': 34}
# {'entity': 'I-LOCATION', 'score': 0.64190257, 'index': 11, 'word': 'ыш', 'start': 34, 'end': 36}
# {'entity': 'O', 'score': 0.64438057, 'index': 12, 'word': 'ында', 'start': 36, 'end': 40}
# {'entity': 'O', 'score': 0.9916931, 'index': 13, 'word': '▁орун', 'start': 41, 'end': 45}
# {'entity': 'O', 'score': 0.9953047, 'index': 14, 'word': '▁алган', 'start': 46, 'end': 51}
# {'entity': 'O', 'score': 0.9901377, 'index': 15, 'word': '▁мамлекет', 'start': 52, 'end': 60}
# {'entity': 'O', 'score': 0.99605453, 'index': 16, 'word': '.', 'start': 60, 'end': 61}


token = ""
label_list = []
token_list = []

for result in ner_results:
    if result["word"].startswith("▁"):
        if token:
            token_list.append(token.replace("▁", ""))
        token = result["word"]
        label_list.append(result["entity"])
    else:
        token += result["word"]

token_list.append(token.replace("▁", ""))

for token, label in zip(token_list, label_list):
    print(f"{token}\t{label}")


# output:
# Кыргызстан    B-LOCATION
# Орто  B-LOCATION
# Азиянын   I-LOCATION
# түндүк-чыгышында  I-LOCATION
# орун  O
# алган O
# мамлекет. O

# aggregation_strategy = "simple"
nlp = pipeline("ner", model = model, tokenizer = tokenizer, aggregation_strategy = "simple")
example = "Кыргызстан Орто Азиянын түндүк-чыгышында орун алган мамлекет."

ner_results = nlp(example)
for result in ner_results:
    result.update({'entity_group': id2label[result['entity_group']]})
    print(result)

# output:
# {'entity_group': 'B-LOCATION', 'score': 0.87275827, 'word': 'Кыргызстан Ор', 'start': 0, 'end': 13}
# {'entity_group': 'I-LOCATION', 'score': 0.73398614, 'word': 'то Азиянын түндүк-чыгыш', 'start': 13, 'end': 36}
# {'entity_group': 'O', 'score': 0.92351407, 'word': 'ында орун алган мамлекет.', 'start': 36, 'end': 61}

NE classes

PERSON, LOCATION , MEASURE , INSTITUTION , PERIOD , ORGANISATION , MEDIA , TITLE , BUSINESS , LEGAL , EVENT , ARTIFACT , INSTALLATION , PERSON_TYPE, NATIONAL, CONCEPT, CREATION, WEBSITE, SUBSTANCE, ACRONYM, IDENTIFIER, UNKNOWN, AWARD, ANIMAL

Downloads last month
4
Safetensors
Model size
277M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for TTimur/xlm-roberta-base-kyrgyzNER

Finetuned
(2495)
this model