|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: lilt-ruroberta |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# lilt-ruroberta |
|
|
|
This model was trained from scratch on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4919 |
|
- Comment: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} |
|
- Date: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} |
|
- Labname: {'precision': 0.5833333333333334, 'recall': 0.6666666666666666, 'f1': 0.6222222222222222, 'number': 21} |
|
- Laboratory: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} |
|
- Measure: {'precision': 0.5833333333333334, 'recall': 0.7777777777777778, 'f1': 0.6666666666666666, 'number': 9} |
|
- Ref Value: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} |
|
- Result: {'precision': 0.25, 'recall': 0.25, 'f1': 0.25, 'number': 12} |
|
- Overall Precision: 0.4528 |
|
- Overall Recall: 0.4 |
|
- Overall F1: 0.4248 |
|
- Overall Accuracy: 0.8698 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 25 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Comment | Date | Labname | Laboratory | Measure | Ref Value | Result | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 2.4398 | 5.0 | 5 | 1.5928 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.5850 | |
|
| 1.4788 | 10.0 | 10 | 1.1857 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.6512 | |
|
| 0.9806 | 15.0 | 15 | 0.8188 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.21875, 'recall': 0.3333333333333333, 'f1': 0.2641509433962264, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.5, 'recall': 0.1111111111111111, 'f1': 0.1818181818181818, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.1667 | 0.1333 | 0.1481 | 0.7660 | |
|
| 0.6358 | 20.0 | 20 | 0.5763 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.41935483870967744, 'recall': 0.6190476190476191, 'f1': 0.5, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.7, 'recall': 0.7777777777777778, 'f1': 0.7368421052631577, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.42857142857142855, 'recall': 0.25, 'f1': 0.3157894736842105, 'number': 12} | 0.4182 | 0.3833 | 0.4 | 0.8675 | |
|
| 0.4712 | 25.0 | 25 | 0.4919 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.5833333333333334, 'recall': 0.6666666666666666, 'f1': 0.6222222222222222, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.5833333333333334, 'recall': 0.7777777777777778, 'f1': 0.6666666666666666, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.25, 'recall': 0.25, 'f1': 0.25, 'number': 12} | 0.4528 | 0.4 | 0.4248 | 0.8698 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|