English
Edit model card

Using HunyuanDiT IP-Adapter

Instructions

The dependencies and installation are basically the same as the base model, and we use the module weights for training. Download the model using the following commands:

cd HunyuanDiT
# Use the huggingface-cli tool to download the model.
# We recommend using module weights as the base model for IP-Adapter inference, as our provided pretrained weights are trained on them.
huggingface-cli download Tencent-Hunyuan/IP-Adapter/ipa.pt --local-dir ./ckpts/t2i/model
huggingface-cli download Tencent-Hunyuan/IP-Adapter/clip_img_encoder.pt  --local-dir ./ckpts/t2i/model/clip_img_encoder

# Quick start
python3 sample_ipadapter.py  --infer-mode fa --ref-image-path ipadapter/input/tiger.png --i-scale 1.0 --prompt 一只老虎在海洋中游泳,背景是海洋。构图方式是居中构图,呈现了动漫风格和文化,营造了平静的氛围。 --infer-steps 100 --is-ipa True --load-key module

Examples of ref input and IP-Adapter results are as follows:

Ref Input
Image 0 Image 1 Image 2
IP-Adapter Output
一只老虎在奔跑。
(A tiger running.)
一个卡通美女,抱着一只小猪。
(A cartoon beauty holding a little pig.)
一片紫色薰衣草地。
(A purple lavender field.)
Image 3 Image 4 Image 5
一只老虎在看书。
(A tiger is reading a book.)
一个卡通美女,穿着绿色衣服。
(A cartoon beauty wearing green clothes.)
一片紫色薰衣草地,有一只可爱的小狗。
(A purple lavender field with a cute puppy.)
Image 3 Image 4 Image 5
一只老虎在咆哮。
(A tiger is roaring.)
一个卡通美女,戴着墨镜。
(A cartoon beauty wearing sunglasses.)
水墨风格,一片紫色薰衣草地。
(Ink style. A purple lavender field.)
Image 3 Image 4 Image 5

Training

We provide base model weights for IP-Adapter training, you can use module weights for IP-Adapter training.

Here is an example, we load the module weights into the main model and conduct IP-Adapter training.

If apply multiple resolution training, you need to add the --multireso and --reso-step 64 parameter.

task_flag="IP_Adapter"                                # the task flag is used to identify folders.                         # checkpoint root for resume
index_file=path/to/your/index_file
results_dir=./log_EXP                                        # save root for results
batch_size=1                                                 # training batch size
image_size=1024                                              # training image resolution
grad_accu_steps=1                                            # gradient accumulation
warmup_num_steps=0                                           # warm-up steps
lr=0.0001                                                    # learning rate
ckpt_every=10                                         # create a ckpt every a few steps.
ckpt_latest_every=10000                                    # create a ckpt named `latest.pt` every a few steps.
ckpt_every_n_epoch=2                                         # create a ckpt every a few epochs.
epochs=8                                                     # total training epochs

PYTHONPATH=. \
sh $(dirname "$0")/run_g_ipadapter.sh \
    --task-flag ${task_flag} \
    --noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.018 \
    --predict-type v_prediction \
    --multireso \
    --reso-step 64 \
    --uncond-p 0.22 \
    --uncond-p-t5 0.22\
    --uncond-p-img 0.05\
    --index-file ${index_file} \
    --random-flip \
    --lr ${lr} \
    --batch-size ${batch_size} \
    --image-size ${image_size} \
    --global-seed 999 \
    --grad-accu-steps ${grad_accu_steps} \
    --warmup-num-steps ${warmup_num_steps} \
    --use-flash-attn \
    --use-fp16 \
    --extra-fp16 \
    --results-dir ${results_dir} \
    --resume\
    --resume-module-root ckpts/t2i/model/pytorch_model_module.pt \
    --epochs ${epochs} \
    --ckpt-every ${ckpt_every} \
    --ckpt-latest-every ${ckpt_latest_every} \
    --ckpt-every-n-epoch ${ckpt_every_n_epoch} \
    --log-every 10 \
    --deepspeed \
    --use-zero-stage 2 \
    --gradient-checkpointing \
    --no-strict \
    --training-parts ipadapter \
    --is-ipa True \
    --resume-ipa True \
    --resume-ipa-root ckpts/t2i/model/ipa.pt  \
    "$@"

Recommended parameter settings

Parameter Description Recommended Parameter Value Note
--batch-size Training batch size 1 Depends on GPU memory
--grad-accu-steps Size of gradient accumulation 2 -
--lr Learning rate 0.0001 -
--training-parts be trained parameters when training IP-Adapter ipadapter -
--is-ipa training IP-Adapter or not True -
--resume-ipa-root resume ipa model or not when training ipa model path -

Inference

Use the following command line for inference.

a. Use the parameter float i-scale to specify the weight of IP-Adapter reference image. The bigger parameter indicates more relativity to reference image.

python3 sample_ipadapter.py  --infer-mode fa --ref-image-path ipadapter/input/beach.png --i-scale 1.0 --prompt 一只老虎在海洋中游泳,背景是海洋。构图方式是居中构图,呈现了动漫风格和文化,营造了平静的氛围。 --infer-steps 100 --is-ipa True --load-key module
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .