TerryHenrickson's picture
Training in progress, step 500
51369b3 verified
|
raw
history blame
3.53 kB
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: t5-small-finetuned-xsum
    results: []

t5-small-finetuned-xsum

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2397
  • Rouge1: 39.9145
  • Rouge2: 33.183
  • Rougel: 39.9484
  • Rougelsum: 39.9376
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 90 3.4654 9.8007 0.2231 9.4993 9.501 18.6889
No log 2.0 180 2.1906 10.4443 0.2158 9.8828 9.8755 18.8972
No log 3.0 270 1.3067 11.7213 0.5145 10.913 10.9345 18.8528
No log 4.0 360 0.7369 14.9807 1.4227 13.7179 13.7131 18.8333
No log 5.0 450 0.6143 19.8511 4.6089 18.0244 17.9558 18.7083
2.447 6.0 540 0.5312 23.1026 8.6515 20.7866 20.757 18.7139
2.447 7.0 630 0.4782 21.9961 9.3626 19.7651 19.7488 18.5944
2.447 8.0 720 0.4365 16.4406 6.5397 14.9694 14.9816 18.6639
2.447 9.0 810 0.3603 6.9337 3.7397 6.6337 6.6621 18.9028
2.447 10.0 900 0.2696 24.2884 19.0601 24.1044 24.1488 18.9694
2.447 11.0 990 0.2590 39.2002 32.3107 39.202 39.1928 19.0
0.572 12.0 1080 0.2546 39.0083 32.1464 39.0296 38.9988 19.0
0.572 13.0 1170 0.2486 39.519 32.7114 39.5614 39.5391 19.0
0.572 14.0 1260 0.2465 39.589 32.8014 39.6298 39.6092 19.0
0.572 15.0 1350 0.2444 39.5831 32.7959 39.6266 39.6123 19.0
0.572 16.0 1440 0.2427 39.7174 32.9525 39.7513 39.7311 19.0
0.3469 17.0 1530 0.2412 39.8478 33.0999 39.8901 39.8708 19.0
0.3469 18.0 1620 0.2401 39.8528 33.1031 39.8819 39.873 19.0
0.3469 19.0 1710 0.2398 39.9283 33.1964 39.9502 39.9533 19.0
0.3469 20.0 1800 0.2397 39.9145 33.183 39.9484 39.9376 19.0

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2