Th3S's picture
Upload README.md with huggingface_hub
37e4f90 verified
|
raw
history blame
1.97 kB
metadata
base_model: LLM4Binary/llm4decompile-1.3b-v2
license: mit
tags:
  - decompile
  - binary
  - llama-cpp
  - gguf-my-repo
widget:
  - text: |
      # This is the assembly code:
      float func0(float param_1)

      {
        return param_1 - (float)(int)param_1;
      }# What is the source code?

Th3S/llm4decompile-1.3b-v2-Q4_K_M-GGUF

This model was converted to GGUF format from LLM4Binary/llm4decompile-1.3b-v2 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Th3S/llm4decompile-1.3b-v2-Q4_K_M-GGUF --hf-file llm4decompile-1.3b-v2-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Th3S/llm4decompile-1.3b-v2-Q4_K_M-GGUF --hf-file llm4decompile-1.3b-v2-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Th3S/llm4decompile-1.3b-v2-Q4_K_M-GGUF --hf-file llm4decompile-1.3b-v2-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Th3S/llm4decompile-1.3b-v2-Q4_K_M-GGUF --hf-file llm4decompile-1.3b-v2-q4_k_m.gguf -c 2048