Edit model card

industry-mar11Top10

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("Thang203/industry-mar11Top10")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 10
  • Number of training documents: 516
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 models - language - data - large - language models 15 -1_models_language_data_large
0 models - model - language - training - language models 169 0_models_model_language_training
1 code - language - models - llms - programming 118 1_code_language_models_llms
2 ai - models - language - dialogue - human 49 2_ai_models_language_dialogue
3 detection - models - text - language - model 47 3_detection_models_text_language
4 multimodal - visual - image - models - generation 32 4_multimodal_visual_image_models
5 agents - language - policy - learning - tasks 24 5_agents_language_policy_learning
6 speech - asr - text - speaker - recognition 22 6_speech_asr_text_speaker
7 reasoning - cot - models - problems - commonsense 21 7_reasoning_cot_models_problems
8 retrieval - information - query - llms - models 19 8_retrieval_information_query_llms

Training hyperparameters

  • calculate_probabilities: False
  • language: english
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: 10
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.25.2
  • HDBSCAN: 0.8.33
  • UMAP: 0.5.5
  • Pandas: 1.5.3
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 2.6.1
  • Transformers: 4.38.2
  • Numba: 0.58.1
  • Plotly: 5.15.0
  • Python: 3.10.12
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.