TheBloke's picture
Update README.md
0fd4c44
metadata
inference: false
license: other
language:
  - zh
  - en
pipeline_tag: text-generation
TheBlokeAI

Fire Balloon's Baichuan Llama 7B GGML

These files are GGML format model files for Fire Balloon's Baichuan Llama 7B.

GGML files are for CPU + GPU inference using llama.cpp and libraries and UIs which support this format, such as:

This model is a Llama conversion of [Baichuan Inc's Baichuan 7B]https://huggingface.co/baichuan-inc/baichuan-7B). It contains the same data, but rewritten by Fire Balloon into the familiar Llama format.

Repositories available

Prompt template

A general prompt template is unknown at this point.

The example given in the README is a 1-shot categorisation:

Hamlet->Shakespeare\nOne Hundred Years of Solitude->

Compatibility

Original llama.cpp quant methods: q4_0, q4_1, q5_0, q5_1, q8_0

I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit 2d5db48.

These are guaranteed to be compatbile with any UIs, tools and libraries released since late May.

New k-quant methods: q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K

These new quantisation methods are compatible with llama.cpp as of June 6th, commit 2d43387.

They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt.

Explanation of the new k-quant methods

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
  • GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
baichuan-llama-7b.ggmlv3.q2_K.bin q2_K 2 3.02 GB 5.52 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors.
baichuan-llama-7b.ggmlv3.q3_K_L.bin q3_K_L 3 3.76 GB 6.26 GB New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
baichuan-llama-7b.ggmlv3.q3_K_M.bin q3_K_M 3 3.45 GB 5.95 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
baichuan-llama-7b.ggmlv3.q3_K_S.bin q3_K_S 3 3.11 GB 5.61 GB New k-quant method. Uses GGML_TYPE_Q3_K for all tensors
baichuan-llama-7b.ggmlv3.q4_0.bin q4_0 4 3.94 GB 6.44 GB Original llama.cpp quant method, 4-bit.
baichuan-llama-7b.ggmlv3.q4_1.bin q4_1 4 4.38 GB 6.88 GB Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
baichuan-llama-7b.ggmlv3.q4_K_M.bin q4_K_M 4 4.26 GB 6.76 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K
baichuan-llama-7b.ggmlv3.q4_K_S.bin q4_K_S 4 4.01 GB 6.51 GB New k-quant method. Uses GGML_TYPE_Q4_K for all tensors
baichuan-llama-7b.ggmlv3.q5_0.bin q5_0 5 4.81 GB 7.31 GB Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference.
baichuan-llama-7b.ggmlv3.q5_1.bin q5_1 5 5.25 GB 7.75 GB Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference.
baichuan-llama-7b.ggmlv3.q5_K_M.bin q5_K_M 5 4.98 GB 7.48 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K
baichuan-llama-7b.ggmlv3.q5_K_S.bin q5_K_S 5 4.85 GB 7.35 GB New k-quant method. Uses GGML_TYPE_Q5_K for all tensors
baichuan-llama-7b.ggmlv3.q6_K.bin q6_K 6 5.74 GB 8.24 GB New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors
baichuan-llama-7b.ggmlv3.q8_0.bin q8_0 8 7.44 GB 9.94 GB Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to run in llama.cpp

I use the following command line; adjust for your tastes and needs:

./main -t 10 -ngl 32 -m baichuan-llama-7b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"

If you're able to use full GPU offloading, you should use -t 1 to get best performance.

If not able to fully offload to GPU, you should use more cores. Change -t 10 to the number of physical CPU cores you have, or a lower number depending on what gives best performance.

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp-models.md.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.

Patreon special mentions: Mano Prime, Fen Risland, Derek Yates, Preetika Verma, webtim, Sean Connelly, Alps Aficionado, Karl Bernard, Junyu Yang, Nathan LeClaire, Chris McCloskey, Lone Striker, Asp the Wyvern, Eugene Pentland, Imad Khwaja, trip7s trip, WelcomeToTheClub, John Detwiler, Artur Olbinski, Khalefa Al-Ahmad, Trenton Dambrowitz, Talal Aujan, Kevin Schuppel, Luke Pendergrass, Pyrater, Joseph William Delisle, terasurfer , vamX, Gabriel Puliatti, David Flickinger, Jonathan Leane, Iucharbius , Luke, Deep Realms, Cory Kujawski, ya boyyy, Illia Dulskyi, senxiiz, Johann-Peter Hartmann, John Villwock, K, Ghost , Spiking Neurons AB, Nikolai Manek, Rainer Wilmers, Pierre Kircher, biorpg, Space Cruiser, Ai Maven, subjectnull, Willem Michiel, Ajan Kanaga, Kalila, chris gileta, Oscar Rangel.

Thank you to all my generous patrons and donaters!

Original model card: Fire Balloon's Baichuan Llama 7B

baichuan-llama-7B

使用LLaMA格式保存的baichuan-7B。可以直接使用LlamaForCausalLM和LlamaTokenizer加载。

baichuan-7B model saved in the format of the LLaMA model. You can directly use LlamaForCausalLM and LlamaTokenizer to load the model.

from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("fireballoon/baichuan-llama-7b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("fireballoon/baichuan-llama-7b", device_map="auto")

The following is from the original repo baichuan-7B.

baichuan-7B

baichuan-7B是由百川智能开发的一个开源的大规模预训练模型。基于Transformer结构,在大约1.2万亿tokens上训练的70亿参数模型,支持中英双语,上下文窗口长度为4096。在标准的中文和英文权威benchmark(C-EVAL/MMLU)上均取得同尺寸最好的效果。

如果希望使用baichuan-7B(如进行推理、Finetune等),我们推荐使用配套代码库baichuan-7B

baichuan-7B is an open-source large-scale pre-trained model developed by Baichuan Intelligent Technology. Based on the Transformer architecture, it is a model with 7 billion parameters trained on approximately 1.2 trillion tokens. It supports both Chinese and English, with a context window length of 4096. It achieves the best performance of its size on standard Chinese and English authoritative benchmarks (C-EVAL/MMLU).

If you wish to use baichuan-7B (for inference, finetuning, etc.), we recommend using the accompanying code library baichuan-7B.

Why use baichuan-7B

  • 在同尺寸模型中baichuan-7B达到了目前SOTA的水平,参考下面MMLU指标

  • baichuan-7B使用自有的中英文双语语料进行训练,在中文上进行优化,在C-Eval达到SOTA水平

  • 不同于LLaMA完全禁止商业使用,baichuan-7B使用更宽松的开源协议,允许用于商业目的

  • Among models of the same size, baichuan-7B has achieved the current state-of-the-art (SOTA) level, as evidenced by the following MMLU metrics.

  • baichuan-7B is trained on proprietary bilingual Chinese-English corpora, optimized for Chinese, and achieves SOTA performance on C-Eval.

  • Unlike LLaMA, which completely prohibits commercial use, baichuan-7B employs a more lenient open-source license, allowing for commercial purposes.

How to Get Started with the Model

如下是一个使用baichuan-7B进行1-shot推理的任务,根据作品给出作者名,正确输出为"夜雨寄北->李商隐"

from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("fireballoon/baichuan-llama-7b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("fireballoon/baichuan-llama-7b", device_map="auto")
inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt')
inputs = inputs.to('cuda:0')
pred = model.generate(**inputs, max_new_tokens=64,repetition_penalty=1.1)
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))

The following is a task of performing 1-shot inference using baichuan-7B, where the author's name is given based on the work, with the correct output being "One Hundred Years of Solitude->Gabriel Garcia Marquez"

from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("fireballoon/baichuan-llama-7b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("fireballoon/baichuan-llama-7b", device_map="auto")
inputs = tokenizer('Hamlet->Shakespeare\nOne Hundred Years of Solitude->', return_tensors='pt')
inputs = inputs.to('cuda:0')
pred = model.generate(**inputs, max_new_tokens=64,repetition_penalty=1.1)
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))

Model Details

Model Description

Model Sources

整体模型基于标准的Transformer结构,我们采用了和LLaMA一样的模型设计

  • Position Embedding:采用rotary-embedding,是现阶段被大多数模型采用的位置编码方案,具有很好的外推性。
  • Feedforward Layer:采用SwiGLU,Feedforward变化为(8/3)倍的隐含层大小,即11008。
  • Layer Normalization: 基于RMSNorm的Pre-Normalization。

具体参数和见下表

Hyperparameter Value
n_parameters 7000559616
n_layers 32
n_heads 32
d_model 4096
vocab size 64000
sequence length 4096

The overall model is based on the standard Transformer structure, and we have adopted the same model design as LLaMA:

  • Position Embedding: We use rotary-embedding, which is the position encoding scheme adopted by most models at this stage, and it has excellent extrapolation capabilities.
  • Feedforward Layer: We use SwiGLU. The feedforward changes to (8/3) times the size of the hidden layer, that is, 11008.
  • Layer Normalization: Pre-Normalization based on RMSNorm.

The specific parameters are as follows:

Hyperparameter Value
n_parameters 7000559616
n_layers 32
n_heads 32
d_model 4096
vocab size 64000
sequence length 4096

Uses

Downstream Use

我们同时开源出了和本模型配套的训练代码,允许进行高效的Finetune用于下游任务,具体参见baichuan-7B

We have also open-sourced the training code that accompanies this model, allowing for efficient finetuning for downstream tasks. For more details, please refer to baichuan-7B.

Out-of-Scope Use

在没有充分评估风险和采取缓解措施的情况下投入生产使用;任何可能被视为不负责任或有害的使用案例。

Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.

Bias, Risks, and Limitations

baichuan-7B可能会产生事实上不正确的输出,不应依赖它产生事实上准确的信息。baichuan-7B是在各种公共数据集上进行训练的。尽管我们已经做出了巨大的努力来清洗预训练数据,但这个模型可能会生成淫秽、偏见或其他冒犯性的输出。

baichuan-7B can produce factually incorrect output, and should not be relied on to produce factually accurate information. baichuan-7B was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.

Training Details

训练具体设置参见baichuan-7B

For specific training settings, please refer to baichuan-7B.

Evaluation

中文评测

C-Eval

CEval数据集是一个全面的中文基础模型评测数据集,涵盖了52个学科和四个难度的级别。我们使用该数据集的dev集作为few-shot的来源,在test集上进行了5-shot测试。

Model 5-shot Average Avg(Hard) STEM Social Sciences Humanities Others
GPT-4 68.7 54.9 67.1 77.6 64.5 67.8
ChatGPT 54.4 41.4 52.9 61.8 50.9 53.6
Claude-v1.3 54.2 39.0 51.9 61.7 52.1 53.7
Claude-instant-v1.0 45.9 35.5 43.1 53.8 44.2 45.4
moss-moon-003-base (16B) 27.4 24.5 27.0 29.1 27.2 26.9
Ziya-LLaMA-13B-pretrain 30.2 22.7 27.7 34.4 32.0 28.9
LLaMA-7B-hf 27.1 25.9 27.1 26.8 27.9 26.3
ChatGLM-6B 34.5 23.1 30.4 39.6 37.4 34.5
Falcon-7B 25.8 24.3 25.8 26.0 25.8 25.6
Open-LLaMA-v2-pretrain (7B) 24.0 22.5 23.1 25.3 25.2 23.2
TigerBot-7B-base 25.7 27.0 27.3 24.7 23.4 26.1
Aquila-7B* 25.5 25.2 25.6 24.6 25.2 26.6
BLOOM-7B 22.8 20.2 21.8 23.3 23.9 23.3
BLOOMZ-7B 35.7 25.8 31.3 43.5 36.6 35.6
baichuan-7B 42.8 31.5 38.2 52.0 46.2 39.3

Gaokao

Gaokao 是一个以中国高考题作为评测大语言模型能力的数据集,用以评估模型的语言能力和逻辑推理能力。 我们只保留了其中的单项选择题,并对所有模型进行统一5-shot测试。

以下是测试的结果。

Model Average
Open-LLaMA-v2-pretrain 21.41
Ziya-LLaMA-13B-pretrain 23.17
Falcon-7B 23.98
TigerBot-7B-base 25.94
LLaMA-7B 27.81
ChatGLM-6B 21.41
BLOOM-7B 26.96
BLOOMZ-7B 28.72
Aquila-7B* 24.39
baichuan-7B 36.24

AGIEval

AGIEval 旨在评估模型的认知和解决问题相关的任务中的一般能力。 我们只保留了其中的四选一单项选择题,随机划分后对所有模型进行了统一5-shot测试。

Model Average
Open-LLaMA-v2-pretrain 23.49
Ziya-LLaMA-13B-pretrain 27.64
Falcon-7B 27.18
TigerBot-7B-base 25.19
LLaMA-7B 28.17
ChatGLM-6B 23.49
BLOOM-7B 26.55
BLOOMZ-7B 30.27
Aquila-7B* 25.58
baichuan-7B 34.44

*其中Aquila模型来源于智源官方网站,仅做参考

English Leaderboard

In addition to Chinese, we also tested the model's performance in English.

MMLU

MMLU is an English evaluation dataset that includes 57 multiple-choice tasks, covering elementary mathematics, American history, computer science, law, etc. The difficulty ranges from high school level to expert level, making it a mainstream LLM evaluation dataset.

We adopted the open-source evaluation scheme, and the final 5-shot results are as follows:

Model Humanities Social Sciences STEM Other Average
LLaMA-7B2 34.0 38.3 30.5 38.1 35.1
Falcon-7B1 - - - - 35.0
mpt-7B1 - - - - 35.6
ChatGLM-6B0 35.4 41.0 31.3 40.5 36.9
BLOOM 7B0 25.0 24.4 26.5 26.4 25.5
BLOOMZ 7B0 31.3 42.1 34.4 39.0 36.1
moss-moon-003-base (16B)0 24.2 22.8 22.4 24.4 23.6
moss-moon-003-sft (16B)0 30.5 33.8 29.3 34.4 31.9
baichuan-7B0 38.4 48.9 35.6 48.1 42.3

The superscript in the Model column indicates the source of the results.

0:reimplemented
1:https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
2:https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu