TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Juanako 7B UNA - AWQ
- Model creator: FBL
- Original model: Juanako 7B UNA
Description
This repo contains AWQ model files for FBL's Juanako 7B UNA.
These files were quantised using hardware kindly provided by Massed Compute.
About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
It is supported by:
- Text Generation Webui - using Loader: AutoAWQ
- vLLM - Llama and Mistral models only
- Hugging Face Text Generation Inference (TGI)
- Transformers version 4.35.0 and later, from any code or client that supports Transformers
- AutoAWQ - for use from Python code
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- FBL's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: ChatML
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Provided files, and AWQ parameters
I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
Models are released as sharded safetensors files.
Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
---|---|---|---|---|---|
main | 4 | 128 | VMware Open Instruct | 4096 | 4.15 GB |
How to easily download and use this model in text-generation-webui
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
- Click the Model tab.
- Under Download custom model or LoRA, enter
TheBloke/juanako-7B-UNA-AWQ
. - Click Download.
- The model will start downloading. Once it's finished it will say "Done".
- In the top left, click the refresh icon next to Model.
- In the Model dropdown, choose the model you just downloaded:
juanako-7B-UNA-AWQ
- Select Loader: AutoAWQ.
- Click Load, and the model will load and is now ready for use.
- If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Once you're ready, click the Text Generation tab and enter a prompt to get started!
Multi-user inference server: vLLM
Documentation on installing and using vLLM can be found here.
- Please ensure you are using vLLM version 0.2 or later.
- When using vLLM as a server, pass the
--quantization awq
parameter.
For example:
python3 -m vllm.entrypoints.api_server --model TheBloke/juanako-7B-UNA-AWQ --quantization awq --dtype auto
- When using vLLM from Python code, again set
quantization=awq
.
For example:
from vllm import LLM, SamplingParams
prompts = [
"Tell me about AI",
"Write a story about llamas",
"What is 291 - 150?",
"How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''
prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="TheBloke/juanako-7B-UNA-AWQ", quantization="awq", dtype="auto")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Multi-user inference server: Hugging Face Text Generation Inference (TGI)
Use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0
Example Docker parameters:
--model-id TheBloke/juanako-7B-UNA-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
pip3 install huggingface-hub
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: ", response)
Inference from Python code using Transformers
Install the necessary packages
- Requires: Transformers 4.35.0 or later.
- Requires: AutoAWQ 0.1.6 or later.
pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
If you have problems installing AutoAWQ using the pre-built wheels, install it from source instead:
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
Transformers example code (requires Transformers 4.35.0 and later)
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model_name_or_path = "TheBloke/juanako-7B-UNA-AWQ"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
low_cpu_mem_usage=True,
device_map="cuda:0"
)
# Using the text streamer to stream output one token at a time
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''
# Convert prompt to tokens
tokens = tokenizer(
prompt_template,
return_tensors='pt'
).input_ids.cuda()
generation_params = {
"do_sample": True,
"temperature": 0.7,
"top_p": 0.95,
"top_k": 40,
"max_new_tokens": 512,
"repetition_penalty": 1.1
}
# Generate streamed output, visible one token at a time
generation_output = model.generate(
tokens,
streamer=streamer,
**generation_params
)
# Generation without a streamer, which will include the prompt in the output
generation_output = model.generate(
tokens,
**generation_params
)
# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("model.generate output: ", text_output)
# Inference is also possible via Transformers' pipeline
from transformers import pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
**generation_params
)
pipe_output = pipe(prompt_template)[0]['generated_text']
print("pipeline output: ", pipe_output)
Compatibility
The files provided are tested to work with:
- text-generation-webui using
Loader: AutoAWQ
. - vLLM version 0.2.0 and later.
- Hugging Face Text Generation Inference (TGI) version 1.1.0 and later.
- Transformers version 4.35.0 and later.
- AutoAWQ version 0.1.1 and later.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: FBL's Juanako 7B UNA
juanako-7b-UNA (Uniform Neural Alignment)
This model is a fine-tuned version of fblgit/juanako-7b-UNA-v2-phase-1 on the HuggingFaceH4/ultrafeedback_binarized dataset. It outperforms in many aspects most of the current Mistral based models and is the latest and most powerful juanako version as of now.
Scores
The official HuggingFace results can be found here
Model | Average ⬆️ | ARC (25-s) ⬆️ | HellaSwag (10-s) ⬆️ | MMLU (5-s) ⬆️ | TruthfulQA (MC) (0-s) ⬆️ | Winogrande (5-s) | GSM8K (5-s) | DROP (3-s) |
---|---|---|---|---|---|---|---|---|
mistralai/Mistral-7B-v0.1 | 50.32 | 59.58 | 83.31 | 64.16 | 42.15 | 78.37 | 18.12 | 6.14 |
Intel/neural-chat-7b-v3-1 | 59.0 | 66.21 | 83.64 | 62.37 | 59.65 | 78.14 | 19.56 | 43.84 |
fblgit/juanako-7b-UNA | 59.91 | 68.17 | 85.34 | 62.47 | 65.13 | 78.85 | 20.7 | 38.74 |
It scores: 59.91 according HuggingFace LLM Leaderboard.
It scores: 65.1 with big-refactor
branch of lm-eval-harness
Author Xavier M. @fblgit
Model description
juanako uses UNA, Uniform Neural Alignment. A training technique that ease alignment between transformer layers yet to be published.
Prompts
The following prompts showed positive results, it may depend the task and needs further experimentation but this should work for starters:
<|im_start|>system
- You are a helpful assistant chatbot trained by MosaicML.
- You answer questions.
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
<|im_start|>user
Explain QKV<|im_end|>
<|im_start|>assistant
### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!
### Human: Explain QKV
### Assistant:
[Round <|round|>]
问:Explain QKV
答:
[Round <|round|>]
Question:Explain QKV
Answer:
Question:Explain QKV
Answer:
Evaluations (lm-eval big-refactor branch)
TruthfulQA 0-Shot
| Tasks |Version|Filter|Metric|Value | |Stderr|
|--------------|-------|------|------|-----:|---|-----:|
|truthfulqa_mc2|Yaml |none |acc |0.6549|± |0.0153|
ARC 25-Shot
| Tasks |Version|Filter| Metric |Value | |Stderr|
|-------------|-------|------|--------|-----:|---|-----:|
|arc_challenge|Yaml |none |acc |0.6476|± |0.0140|
| | |none |acc_norm|0.6809|± |0.0136|
HellaSwag 10-Shot
| Tasks |Version|Filter| Metric |Value | |Stderr|
|---------|-------|------|--------|-----:|---|-----:|
|hellaswag|Yaml |none |acc |0.6703|± |0.0047|
| | |none |acc_norm|0.8520|± |0.0035|
GSM8k 5-Shot
|Tasks|Version| Filter | Metric |Value | |Stderr|
|-----|-------|----------|-----------|-----:|---|-----:|
|gsm8k|Yaml |get-answer|exact_match|0.4898|± |0.0138|
GPT Evaluations 0-Shot
| Tasks |Version|Filter| Metric |Value | |Stderr|
|--------------|-------|------|----------|-----:|---|-----:|
|boolq |Yaml |none |acc |0.8703|± |0.0059|
|lambada_openai|Yaml |none |perplexity|3.2598|± |0.0705|
| | |none |acc |0.7336|± |0.0062|
|piqa |Yaml |none |acc |0.8254|± |0.0089|
| | |none |acc_norm |0.8292|± |0.0088|
|sciq |Yaml |none |acc |0.9580|± |0.0063|
| | |none |acc_norm |0.9130|± |0.0089|
MathQA 0-Shot
|Tasks |Version|Filter| Metric |Value | |Stderr|
|------|-------|------|--------|-----:|---|-----:|
|mathqa|Yaml |none |acc |0.3752|± |0.0089|
| | |none |acc_norm|0.3772|± |0.0089|
PiQa 1-Shot
|Tasks|Version|Filter| Metric |Value | |Stderr|
|-----|-------|------|--------|-----:|---|-----:|
|piqa |Yaml |none |acc |0.8308|± |0.0087|
| | |none |acc_norm|0.8357|± |0.0086|
Winogrande 5-Shot
| Tasks |Version|Filter|Metric|Value| |Stderr|
|----------|-------|------|------|----:|---|-----:|
|winogrande|Yaml |none |acc |0.768|± |0.0119|
PubMedQA 0-Shot
| Tasks |Version|Filter|Metric|Value| |Stderr|
|--------|-------|------|------|----:|---|-----:|
|pubmedqa|Yaml |none |acc | 0.76|± |0.0191|
RACE 1-Shot
|Tasks|Version|Filter|Metric|Value | |Stderr|
|-----|-------|------|------|-----:|---|-----:|
|race |Yaml |none |acc |0.5282|± |0.0154|
MMLU 5-Shot (8-Bit)
| Groups |Version|Filter|Metric|Value | |Stderr|
|------------------|-------|------|------|-----:|---|-----:|
|mmlu |N/A |none |acc |0.6137|± |0.1243|
| - humanities |N/A |none |acc |0.5671|± |0.1101|
| - other |N/A |none |acc |0.6859|± |0.1164|
| - social_sciences|N/A |none |acc |0.7195|± |0.0713|
| - stem |N/A |none |acc |0.5087|± |0.1297|
DROP 3-Shot (8-Bit) (Instruct-Eval)
{'score': 0.49801113762927607}
{'drop': 49.8}
drop: 49.8
CRASS 0-Shot (Instruct-Eval)
{'score': 0.8357664233576643}
{'crass': 83.58}
crass: 83.58
Training Details
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 14
- gradient_accumulation_steps: 16
- total_train_batch_size: 224
- total_eval_batch_size: 14
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.4795 | 0.2 | 56 | 0.4958 | -1.3684 | -2.6385 | 0.7552 | 1.2701 | -265.3887 | -241.2612 | -2.2572 | -2.4922 |
0.4642 | 0.4 | 112 | 0.4859 | -1.0380 | -1.9769 | 0.7273 | 0.9389 | -258.7718 | -237.9569 | -2.2414 | -2.4751 |
0.4758 | 0.61 | 168 | 0.4808 | -1.2594 | -2.3704 | 0.7343 | 1.1110 | -262.7074 | -240.1708 | -2.2305 | -2.4633 |
0.4549 | 0.81 | 224 | 0.4768 | -1.1906 | -2.3201 | 0.7552 | 1.1295 | -262.2044 | -239.4827 | -2.2284 | -2.4610 |
Framework versions
- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
Citations
If you find juanako useful please:
@misc{juanako7buna,
title={Juanako: Uniform Neural Alignment},
author={Xavier Murias},
year={2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/fblgit/juanako-7b-UNA}},
}
Thanks to all the brilliant humans behind the creation of AI, here some of the ones that we find relevant to our research. If you feel a citation is missing, please contact.
@misc{lin2021truthfulqa,
title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
author={Stephanie Lin and Jacob Hilton and Owain Evans},
year={2021},
eprint={2109.07958},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{tunstall2023zephyr,
title={Zephyr: Direct Distillation of LM Alignment},
author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
year={2023},
eprint={2310.16944},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@inproceedings{Bisk2020,
author = {Yonatan Bisk and Rowan Zellers and
Ronan Le Bras and Jianfeng Gao
and Yejin Choi},
title = {PIQA: Reasoning about Physical Commonsense in
Natural Language},
booktitle = {Thirty-Fourth AAAI Conference on
Artificial Intelligence},
year = {2020},
}
@software{eval-harness,
author = {Gao, Leo and
Tow, Jonathan and
Biderman, Stella and
Black, Sid and
DiPofi, Anthony and
Foster, Charles and
Golding, Laurence and
Hsu, Jeffrey and
McDonell, Kyle and
Muennighoff, Niklas and
Phang, Jason and
Reynolds, Laria and
Tang, Eric and
Thite, Anish and
Wang, Ben and
Wang, Kevin and
Zou, Andy},
title = {A framework for few-shot language model evaluation},
month = sep,
year = 2021,
publisher = {Zenodo},
version = {v0.0.1},
doi = {10.5281/zenodo.5371628},
url = {https://doi.org/10.5281/zenodo.5371628}
}
@misc{rafailov2023direct,
title={Direct Preference Optimization: Your Language Model is Secretly a Reward Model},
author={Rafael Rafailov and Archit Sharma and Eric Mitchell and Stefano Ermon and Christopher D. Manning and Chelsea Finn},
year={2023},
eprint={2305.18290},
archivePrefix={arXiv},
}
- Downloads last month
- 7
Model tree for TheBloke/juanako-7B-UNA-AWQ
Base model
fblgit/juanako-7b-UNADataset used to train TheBloke/juanako-7B-UNA-AWQ
Evaluation results
- accuracy on truthful_qavalidation set self-reported65.130
- accuracy on ai2_arctest set self-reported68.170
- accuracy on Rowan/hellaswagtest set self-reported85.340
- accuracy on winograndetest set self-reported78.850
- accuracy on cais/mmlutest set self-reported62.470
- accuracy on piqatest set self-reported83.570
- accuracy on dropvalidation set self-reported38.740
- accuracy on bigbio/pubmed_qavalidation set self-reported76.000