koala-7B-GGML / README.md
TheBloke's picture
New GGMLv3 format for breaking llama.cpp change May 19th commit 2d5db48
3bef463
|
raw
history blame
4.44 kB
metadata
license: other
library_name: transformers
pipeline_tag: text-generation
datasets:
  - RyokoAI/ShareGPT52K
  - Hello-SimpleAI/HC3
tags:
  - koala
  - ShareGPT
  - llama
  - gptq
inference: false

Koala: A Dialogue Model for Academic Research

This repo contains the weights of the Koala 7B model produced at Berkeley. It is the result of combining the diffs from https://huggingface.co/young-geng/koala with the original Llama 7B model.

This version has then been quantized to 4-bit and 5-bit GGML for use with llama.cpp.

My Koala repos

I have the following Koala model repositories available:

13B models:

7B models:

THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!

llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508

I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit 2d5db48 or later) to use them.

For files compatible with the previous version of llama.cpp, please see branch previous_llama_ggmlv2.

How to run in llama.cpp

I use the following command line; adjust for your tastes and needs:

./main -t 18 -m koala-7B-4bit-128g.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "BEGINNING OF CONVERSATION:
USER: <PROMPT GOES HERE>
GPT:"

Change -t 18 to the number of physical CPU cores you have. For example if your system has 8 cores, 16 threads, use -t 8.

This model should be able to run in 8GB RAM without swapping.

How the Koala delta weights were merged

The Koala delta weights were originally merged using the following commands, producing koala-7B-HF:

git clone https://github.com/young-geng/EasyLM

git clone https://huggingface.co/nyanko7/LLaMA-7B

mkdir koala_diffs && cd koala_diffs && wget https://huggingface.co/young-geng/koala/resolve/main/koala_7b_diff_v2

cd EasyLM

PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.models.llama.convert_torch_to_easylm \
--checkpoint_dir=/content/LLaMA-7B \
--output_file=/content/llama-7B-LM \
--streaming=True

PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.scripts.diff_checkpoint --recover_diff=True \
--load_base_checkpoint='params::/content/llama-7B-LM' \
--load_target_checkpoint='params::/content/koala_diffs/koala_7b_diff_v2' \
--output_file=/content/koala_7b.diff.weights \
--streaming=True

PYTHON_PATH="${PWD}:$PYTHONPATH" python \
-m EasyLM.models.llama.convert_easylm_to_hf --model_size=7b \
--output_dir=/content/koala-7B-HF \
--load_checkpoint='params::/content/koala_7b.diff.weights' \
--tokenizer_path=/content/LLaMA-7B/tokenizer.model

Further info

Check out the following links to learn more about the Berkeley Koala model.

License

The model weights are intended for academic research only, subject to the model License of LLaMA, Terms of Use of the data generated by OpenAI, and Privacy Practices of ShareGPT. Any other usage of the model weights, including but not limited to commercial usage, is strictly prohibited.