Transformers
GGUF
English
llama
tulu-7B-GGUF / README.md
TheBloke's picture
Update base_model formatting
b06858a
metadata
language:
  - en
license: other
datasets:
  - databricks/databricks-dolly-15k
  - OpenAssistant/oasst1
  - sahil2801/CodeAlpaca-20k
model_name: Tulu 7B
base_model: allenai/tulu-7b
inference: false
model_creator: Allen Institute for AI
model_type: llama
prompt_template: |
  <|user|>
  {prompt}
  <|assistant|>
quantized_by: TheBloke
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Tulu 7B - GGUF

Description

This repo contains GGUF format model files for Allen AI's Tulu 7B.

About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplate list of clients and libraries that are known to support GGUF:

  • llama.cpp. The source project for GGUF. Offers a CLI and a server option.
  • text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
  • KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
  • LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
  • LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
  • Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
  • ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
  • candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.

Repositories available

Prompt template: Tulu

<|user|>
{prompt}
<|assistant|>

Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

Explanation of quantisation methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
tulu-7b.Q2_K.gguf Q2_K 2 2.83 GB 5.33 GB smallest, significant quality loss - not recommended for most purposes
tulu-7b.Q3_K_S.gguf Q3_K_S 3 2.95 GB 5.45 GB very small, high quality loss
tulu-7b.Q3_K_M.gguf Q3_K_M 3 3.30 GB 5.80 GB very small, high quality loss
tulu-7b.Q3_K_L.gguf Q3_K_L 3 3.60 GB 6.10 GB small, substantial quality loss
tulu-7b.Q4_0.gguf Q4_0 4 3.83 GB 6.33 GB legacy; small, very high quality loss - prefer using Q3_K_M
tulu-7b.Q4_K_S.gguf Q4_K_S 4 3.86 GB 6.36 GB small, greater quality loss
tulu-7b.Q4_K_M.gguf Q4_K_M 4 4.08 GB 6.58 GB medium, balanced quality - recommended
tulu-7b.Q5_0.gguf Q5_0 5 4.65 GB 7.15 GB legacy; medium, balanced quality - prefer using Q4_K_M
tulu-7b.Q5_K_S.gguf Q5_K_S 5 4.65 GB 7.15 GB large, low quality loss - recommended
tulu-7b.Q5_K_M.gguf Q5_K_M 5 4.78 GB 7.28 GB large, very low quality loss - recommended
tulu-7b.Q6_K.gguf Q6_K 6 5.53 GB 8.03 GB very large, extremely low quality loss
tulu-7b.Q8_0.gguf Q8_0 8 7.16 GB 9.66 GB very large, extremely low quality loss - not recommended

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to download GGUF files

Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:

  • LM Studio
  • LoLLMS Web UI
  • Faraday.dev

In text-generation-webui

Under Download Model, you can enter the model repo: TheBloke/tulu-7B-GGUF and below it, a specific filename to download, such as: tulu-7b.Q4_K_M.gguf.

Then click Download.

On the command line, including multiple files at once

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

Then you can download any individual model file to the current directory, at high speed, with a command like this:

huggingface-cli download TheBloke/tulu-7B-GGUF tulu-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
More advanced huggingface-cli download usage

You can also download multiple files at once with a pattern:

huggingface-cli download TheBloke/tulu-7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/tulu-7B-GGUF tulu-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

Example llama.cpp command

Make sure you are using llama.cpp from commit d0cee0d or later.

./main -ngl 32 -m tulu-7b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|user|>\n{prompt}\n<|assistant|>"

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 2048 to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp.md.

How to run from Python code

You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries.

How to load this model in Python code, using ctransformers

First install the package

Run one of the following commands, according to your system:

# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers

Simple ctransformers example code

from ctransformers import AutoModelForCausalLM

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/tulu-7B-GGUF", model_file="tulu-7b.Q4_K_M.gguf", model_type="llama", gpu_layers=50)

print(llm("AI is going to"))

How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Allen AI's Tulu 7B

TheBlokeAI

Allen AI's Tulu 7B fp16

These files are pytorch format fp16 model files for Allen AI's Tulu 7B.

It is the result of merging and/or converting the source repository to float16.

Repositories available

Prompt template

The following template should be used:

<|user|>
prompt goes here
<|assistant|>

Note: There should be a newline after <|assistant|>. This appears to be very important for getting this model to respond correctly.

In other words, the prompt is:

<|user|>\nprompt goes here\n<|assistant|>\n

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.

Patreon special mentions: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.

Thank you to all my generous patrons and donaters!

Original model card: Allen AI's Tulu 7B

Tulu 7B

This model is a 7B LLaMa model finetuned on a mixture of instruction datasets (FLAN V2, CoT, Dolly, Open Assistant 1, GPT4-Alpaca, Code-Alpaca, and ShareGPT). Please note this is a model diff - see below for usage instructions.

This was trained as part of the paper How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources. The codebase used to train and evaluate this model can be found at https://github.com/allenai/open-instruct.

This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).

Usage

We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here: https://huggingface.co/docs/transformers/main/model_doc/llama

Clone https://github.com/allenai/open-instruct and install the required dependencies, or just copy scripts/weight_diff.py and install the minimal requirements listed in weight-diff-requirements.txt. Then download or clone this model diff to the same machine.

Then, run:

python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}

And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.

Input Format

The model is trained to use the following format (note the newlines):

<|user|>
Your message here!
<|assistant|>

For best results, format all inputs in this manner.

Performance

Here is the performance of this model across benchmarks explored in our paper How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources:

MMLU 0-shot MMLU 5-shot GSM Direct GSM CoT BBH Direct BBH CoT TydiQA Gold-Passage TydiQA Closed-book Codex-Eval Pass@1 Codex-Eval Pass@10 AlpacaFarm vs Davinci-003 Average
44.5 47.0 6.0 27.0 38.1 39.2 45.7 7.7 17.5 27.8 48.3 33.1

If you use this model, please cite our work, the llama paper, and the original datasets:

@misc{wang2023far,
      title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
      author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
      year={2023},
      eprint={2306.04751},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{touvron2023llama,
      title={LLaMA: Open and Efficient Foundation Language Models},
      author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
      year={2023},
      eprint={2302.13971},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{dolly,
  author = {Databricks},
  title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {Blog post},
  url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}
}
@article{longpre2023flan,
  title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
  author={Longpre, Shayne and Hou, Le and Vu, Tu and Webson, Albert and Chung, Hyung Won and Tay, Yi and Zhou, Denny and Le, Quoc V and Zoph, Barret and Wei, Jason and others},
  journal={arXiv preprint arXiv:2301.13688},
  year={2023}
}
@misc{köpf2023openassistant,
      title={OpenAssistant Conversations -- Democratizing Large Language Model Alignment},
      author={Andreas Köpf and Yannic Kilcher and Dimitri von Rütte and Sotiris Anagnostidis and Zhi-Rui Tam and Keith Stevens and Abdullah Barhoum and Nguyen Minh Duc and Oliver Stanley and Richárd Nagyfi and Shahul ES and Sameer Suri and David Glushkov and Arnav Dantuluri and Andrew Maguire and Christoph Schuhmann and Huu Nguyen and Alexander Mattick},
      year={2023},
      eprint={2304.07327},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@article{peng2023instruction,
  title={Instruction Tuning with GPT-4},
  author={Peng, Baolin and Li, Chunyuan and He, Pengcheng and Galley, Michel and Gao, Jianfeng},
  journal={arXiv preprint arXiv:2304.03277},
  year={2023}
}
@misc{codealpaca,
  author = {Sahil Chaudhary},
  title = {Code Alpaca: An Instruction-following LLaMA model for code generation},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/sahil280114/codealpaca}},
}