|
--- |
|
license: apache-2.0 |
|
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: TinyAITA |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# TinyAITA |
|
|
|
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. |
|
|
|
## Model description |
|
|
|
```py |
|
import torch |
|
from transformers import pipeline, AutoTokenizer, TextStreamer |
|
import re |
|
tokenizer = AutoTokenizer.from_pretrained("TheBossLevel123/TinyAITA") |
|
pipe = pipeline("text-generation", model="TheBossLevel123/TinyAITA", torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
streamer=TextStreamer(tokenizer) |
|
``` |
|
```py |
|
prompt = 'AITA for XYZ?' |
|
outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.9, streamer=streamer, eos_token_id=tokenizer.encode("<|im_end|>")) |
|
if outputs and "generated_text" in outputs[0]: |
|
text = outputs[0]["generated_text"] |
|
print(f"Prompt: {prompt}") |
|
print("") |
|
print(text) |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- training_steps: 200 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|