longformer-simple

This model is a fine-tuned version of allenai/longformer-base-4096 on the stab-gurevych-essays dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3326
  • Claim: {'precision': 0.6375421311900441, 'recall': 0.6000488042947779, 'f1-score': 0.6182275298554368, 'support': 4098.0}
  • Majorclaim: {'precision': 0.8534005037783375, 'recall': 0.7853500231803431, 'f1-score': 0.8179623370352487, 'support': 2157.0}
  • O: {'precision': 0.9584632404706829, 'recall': 0.9674144756877474, 'f1-score': 0.9629180559765586, 'support': 9851.0}
  • Premise: {'precision': 0.884906500445236, 'recall': 0.9064994298745724, 'f1-score': 0.8955728286583305, 'support': 13155.0}
  • Accuracy: 0.8752
  • Macro avg: {'precision': 0.8335780939710751, 'recall': 0.8148281832593602, 'f1-score': 0.8236701878813937, 'support': 29261.0}
  • Weighted avg: {'precision': 0.8727042457708365, 'recall': 0.8751580602166706, 'f1-score': 0.8736819489681839, 'support': 29261.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Claim Majorclaim O Premise Accuracy Macro avg Weighted avg
No log 1.0 41 0.5843 {'precision': 0.48984771573604063, 'recall': 0.14128843338213762, 'f1-score': 0.21931818181818183, 'support': 4098.0} {'precision': 0.5396243701328447, 'recall': 0.5461288827074641, 'f1-score': 0.5428571428571428, 'support': 2157.0} {'precision': 0.8916069169126951, 'recall': 0.858390011166379, 'f1-score': 0.8746832169640548, 'support': 9851.0} {'precision': 0.7743724104313917, 'recall': 0.9660965412390726, 'f1-score': 0.8596746372645179, 'support': 13155.0} 0.7834 {'precision': 0.673862853303243, 'recall': 0.6279759671237634, 'f1-score': 0.6241332947259743, 'support': 29261.0} {'precision': 0.7566882370115429, 'recall': 0.7833635214107515, 'f1-score': 0.7516910901801511, 'support': 29261.0}
No log 2.0 82 0.4171 {'precision': 0.5352343493936415, 'recall': 0.39848706686188384, 'f1-score': 0.45684711148412366, 'support': 4098.0} {'precision': 0.8575712143928036, 'recall': 0.5303662494204914, 'f1-score': 0.6553995989687769, 'support': 2157.0} {'precision': 0.9516030844155844, 'recall': 0.952086082631205, 'f1-score': 0.9518445222509768, 'support': 9851.0} {'precision': 0.8249001331557922, 'recall': 0.9418472063854048, 'f1-score': 0.8795031055900621, 'support': 13155.0} 0.8389 {'precision': 0.7923271953394554, 'recall': 0.7056966513247462, 'f1-score': 0.7358985845734849, 'support': 29261.0} {'precision': 0.8293966272342979, 'recall': 0.8388640169508903, 'f1-score': 0.8281446341741303, 'support': 29261.0}
No log 3.0 123 0.3525 {'precision': 0.6357409713574097, 'recall': 0.49829184968277207, 'f1-score': 0.5586867305061559, 'support': 4098.0} {'precision': 0.7525641025641026, 'recall': 0.8164116828929068, 'f1-score': 0.7831887925283523, 'support': 2157.0} {'precision': 0.9471273523847455, 'recall': 0.9655872500253782, 'f1-score': 0.956268221574344, 'support': 9851.0} {'precision': 0.8749451192741109, 'recall': 0.9089319650323071, 'f1-score': 0.8916147794638529, 'support': 13155.0} 0.8637 {'precision': 0.8025943863950922, 'recall': 0.797305686908341, 'f1-score': 0.7974396310181762, 'support': 29261.0} {'precision': 0.8567240306977373, 'recall': 0.863675199070435, 'f1-score': 0.8587617347894375, 'support': 29261.0}
No log 4.0 164 0.3385 {'precision': 0.6185015290519877, 'recall': 0.5922401171303074, 'f1-score': 0.6050860134629769, 'support': 4098.0} {'precision': 0.7913082842915347, 'recall': 0.8103847936949466, 'f1-score': 0.8007329363261567, 'support': 2157.0} {'precision': 0.9529177057356608, 'recall': 0.9697492640341082, 'f1-score': 0.9612598108271282, 'support': 9851.0} {'precision': 0.8938411050904373, 'recall': 0.8903078677309008, 'f1-score': 0.8920709878894051, 'support': 13155.0} 0.8694 {'precision': 0.8141421560424051, 'recall': 0.8156705106475658, 'f1-score': 0.8147874371264168, 'support': 29261.0} {'precision': 0.8676102420265399, 'recall': 0.8694166296435528, 'f1-score': 0.8684387980236479, 'support': 29261.0}
No log 5.0 205 0.3326 {'precision': 0.6375421311900441, 'recall': 0.6000488042947779, 'f1-score': 0.6182275298554368, 'support': 4098.0} {'precision': 0.8534005037783375, 'recall': 0.7853500231803431, 'f1-score': 0.8179623370352487, 'support': 2157.0} {'precision': 0.9584632404706829, 'recall': 0.9674144756877474, 'f1-score': 0.9629180559765586, 'support': 9851.0} {'precision': 0.884906500445236, 'recall': 0.9064994298745724, 'f1-score': 0.8955728286583305, 'support': 13155.0} 0.8752 {'precision': 0.8335780939710751, 'recall': 0.8148281832593602, 'f1-score': 0.8236701878813937, 'support': 29261.0} {'precision': 0.8727042457708365, 'recall': 0.8751580602166706, 'f1-score': 0.8736819489681839, 'support': 29261.0}

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.0+cu124
  • Datasets 2.19.1
  • Tokenizers 0.20.1
Downloads last month
35
Safetensors
Model size
148M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Theoreticallyhugo/longformer-simple

Finetuned
(82)
this model

Evaluation results