Theoreticallyhugo commited on
Commit
141f598
·
verified ·
1 Parent(s): cd4e89d

trainer: training complete at 2024-02-19 21:00:31.064789.

Browse files
Files changed (3) hide show
  1. README.md +19 -18
  2. meta_data/README_s42_e7.md +87 -0
  3. model.safetensors +1 -1
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.836576014905586
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.4521
36
- - Claim: {'precision': 0.5926012643409038, 'recall': 0.5952492944496708, 'f1-score': 0.5939223278188431, 'support': 4252.0}
37
- - Majorclaim: {'precision': 0.746797608881298, 'recall': 0.8015582034830431, 'f1-score': 0.773209549071618, 'support': 2182.0}
38
- - O: {'precision': 0.9330482727579611, 'recall': 0.8940161725067386, 'f1-score': 0.9131152956722828, 'support': 9275.0}
39
- - Premise: {'precision': 0.8684019663147715, 'recall': 0.8832786885245901, 'f1-score': 0.8757771546995001, 'support': 12200.0}
40
- - Accuracy: 0.8366
41
- - Macro avg: {'precision': 0.7852122780737336, 'recall': 0.7935255897410106, 'f1-score': 0.789006081815561, 'support': 27909.0}
42
- - Weighted avg: {'precision': 0.8383596573659686, 'recall': 0.836576014905586, 'f1-score': 0.837225505344309, 'support': 27909.0}
43
 
44
  ## Model description
45
 
@@ -64,18 +64,19 @@ The following hyperparameters were used during training:
64
  - seed: 42
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
- - num_epochs: 6
68
 
69
  ### Training results
70
 
71
- | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
- |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
- | No log | 1.0 | 41 | 0.5884 | {'precision': 0.49868766404199477, 'recall': 0.22342427093132644, 'f1-score': 0.30859184667857725, 'support': 4252.0} | {'precision': 0.6308376575240919, 'recall': 0.3900091659028414, 'f1-score': 0.4820164259416595, 'support': 2182.0} | {'precision': 0.817888247382327, 'recall': 0.9011320754716982, 'f1-score': 0.8574946137273007, 'support': 9275.0} | {'precision': 0.7873372125242449, 'recall': 0.9316393442622951, 'f1-score': 0.8534314461630875, 'support': 12200.0} | 0.7713 | {'precision': 0.6836876953681646, 'recall': 0.6115512141420403, 'f1-score': 0.6253835831276563, 'support': 27909.0} | {'precision': 0.7412782687839407, 'recall': 0.7712565838976674, 'f1-score': 0.7427359833384354, 'support': 27909.0} |
74
- | No log | 2.0 | 82 | 0.4638 | {'precision': 0.5763888888888888, 'recall': 0.5075258701787394, 'f1-score': 0.5397698849424711, 'support': 4252.0} | {'precision': 0.6741528762805359, 'recall': 0.7841429880843263, 'f1-score': 0.725, 'support': 2182.0} | {'precision': 0.9210763341589732, 'recall': 0.8820485175202156, 'f1-score': 0.9011400561766811, 'support': 9275.0} | {'precision': 0.8506865437426442, 'recall': 0.8886885245901639, 'f1-score': 0.8692723992784124, 'support': 12200.0} | 0.8202 | {'precision': 0.7555761607677606, 'recall': 0.7656014750933613, 'f1-score': 0.7587955850993913, 'support': 27909.0} | {'precision': 0.8184874400582042, 'recall': 0.8202371994697051, 'f1-score': 0.8183829174463697, 'support': 27909.0} |
75
- | No log | 3.0 | 123 | 0.4497 | {'precision': 0.6111299626739056, 'recall': 0.4235653809971778, 'f1-score': 0.5003472704542298, 'support': 4252.0} | {'precision': 0.7032967032967034, 'recall': 0.8212648945921174, 'f1-score': 0.7577167019027485, 'support': 2182.0} | {'precision': 0.9438293905139261, 'recall': 0.8732075471698113, 'f1-score': 0.9071460573476703, 'support': 9275.0} | {'precision': 0.8196342080532061, 'recall': 0.9293442622950819, 'f1-score': 0.8710482848692045, 'support': 12200.0} | 0.8252 | {'precision': 0.7694725661344353, 'recall': 0.7618455212635471, 'f1-score': 0.7590645786434633, 'support': 27909.0} | {'precision': 0.8200463271041109, 'recall': 0.8251818409831954, 'f1-score': 0.8177069473942856, 'support': 27909.0} |
76
- | No log | 4.0 | 164 | 0.4504 | {'precision': 0.5816213828142257, 'recall': 0.6192380056444027, 'f1-score': 0.5998405285340016, 'support': 4252.0} | {'precision': 0.6949866054343666, 'recall': 0.8322639780018332, 'f1-score': 0.7574556830031283, 'support': 2182.0} | {'precision': 0.9409930715935335, 'recall': 0.8785983827493261, 'f1-score': 0.908725954836911, 'support': 9275.0} | {'precision': 0.8776116937814848, 'recall': 0.8710655737704918, 'f1-score': 0.8743263811756962, 'support': 12200.0} | 0.8322 | {'precision': 0.7738031884059027, 'recall': 0.8002914850415135, 'f1-score': 0.7850871368874343, 'support': 27909.0} | {'precision': 0.8393023145203343, 'recall': 0.8321688344261707, 'f1-score': 0.8348025837219264, 'support': 27909.0} |
77
- | No log | 5.0 | 205 | 0.4540 | {'precision': 0.5803511891531451, 'recall': 0.6140639698965192, 'f1-score': 0.5967318020797622, 'support': 4252.0} | {'precision': 0.7292703150912107, 'recall': 0.806141154903758, 'f1-score': 0.7657814540705268, 'support': 2182.0} | {'precision': 0.9338842975206612, 'recall': 0.8893800539083558, 'f1-score': 0.9110890214269937, 'support': 9275.0} | {'precision': 0.8739005343197699, 'recall': 0.8713934426229508, 'f1-score': 0.8726451877693413, 'support': 12200.0} | 0.8331 | {'precision': 0.7793515840211966, 'recall': 0.795244655332896, 'f1-score': 0.7865618663366559, 'support': 27909.0} | {'precision': 0.8378044523993523, 'recall': 0.8330646028162958, 'f1-score': 0.8350303027606281, 'support': 27909.0} |
78
- | No log | 6.0 | 246 | 0.4521 | {'precision': 0.5926012643409038, 'recall': 0.5952492944496708, 'f1-score': 0.5939223278188431, 'support': 4252.0} | {'precision': 0.746797608881298, 'recall': 0.8015582034830431, 'f1-score': 0.773209549071618, 'support': 2182.0} | {'precision': 0.9330482727579611, 'recall': 0.8940161725067386, 'f1-score': 0.9131152956722828, 'support': 9275.0} | {'precision': 0.8684019663147715, 'recall': 0.8832786885245901, 'f1-score': 0.8757771546995001, 'support': 12200.0} | 0.8366 | {'precision': 0.7852122780737336, 'recall': 0.7935255897410106, 'f1-score': 0.789006081815561, 'support': 27909.0} | {'precision': 0.8383596573659686, 'recall': 0.836576014905586, 'f1-score': 0.837225505344309, 'support': 27909.0} |
 
79
 
80
 
81
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8374001218245011
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.4624
36
+ - Claim: {'precision': 0.5906025179856115, 'recall': 0.617826904985889, 'f1-score': 0.6039080459770114, 'support': 4252.0}
37
+ - Majorclaim: {'precision': 0.7631810193321616, 'recall': 0.7960586617781852, 'f1-score': 0.7792732166890982, 'support': 2182.0}
38
+ - O: {'precision': 0.9296403841858387, 'recall': 0.897466307277628, 'f1-score': 0.913270064183444, 'support': 9275.0}
39
+ - Premise: {'precision': 0.8734363502575423, 'recall': 0.875655737704918, 'f1-score': 0.8745446359133887, 'support': 12200.0}
40
+ - Accuracy: 0.8374
41
+ - Macro avg: {'precision': 0.7892150679402886, 'recall': 0.7967519029366551, 'f1-score': 0.7927489906907357, 'support': 27909.0}
42
+ - Weighted avg: {'precision': 0.8404042039171331, 'recall': 0.8374001218245011, 'f1-score': 0.8387335832080923, 'support': 27909.0}
43
 
44
  ## Model description
45
 
 
64
  - seed: 42
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
+ - num_epochs: 7
68
 
69
  ### Training results
70
 
71
+ | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 41 | 0.5869 | {'precision': 0.50130958617077, 'recall': 0.2250705550329257, 'f1-score': 0.310663853270573, 'support': 4252.0} | {'precision': 0.6411985018726591, 'recall': 0.3923006416131989, 'f1-score': 0.48677850440716514, 'support': 2182.0} | {'precision': 0.8172767203513909, 'recall': 0.9027493261455526, 'f1-score': 0.8578893442622951, 'support': 9275.0} | {'precision': 0.7879334257975035, 'recall': 0.931311475409836, 'f1-score': 0.8536438767843726, 'support': 12200.0} | 0.7721 | {'precision': 0.6869295585480809, 'recall': 0.6128579995503783, 'f1-score': 0.6272438946811014, 'support': 27909.0} | {'precision': 0.7425451598936884, 'recall': 0.7720806908165825, 'f1-score': 0.7436480119504476, 'support': 27909.0} |
74
+ | No log | 2.0 | 82 | 0.4605 | {'precision': 0.5800683670786222, 'recall': 0.5188146754468486, 'f1-score': 0.5477343265052762, 'support': 4252.0} | {'precision': 0.679080824088748, 'recall': 0.7855178735105408, 'f1-score': 0.7284317892052699, 'support': 2182.0} | {'precision': 0.9250369696280286, 'recall': 0.8767654986522911, 'f1-score': 0.900254621941769, 'support': 9275.0} | {'precision': 0.8497380970995231, 'recall': 0.8909016393442623, 'f1-score': 0.8698331399303749, 'support': 12200.0} | 0.8213 | {'precision': 0.7584810644737304, 'recall': 0.7679999217384857, 'f1-score': 0.7615634693956725, 'support': 27909.0} | {'precision': 0.8203349361458346, 'recall': 0.8212762908022502, 'f1-score': 0.8198154876923865, 'support': 27909.0} |
75
+ | No log | 3.0 | 123 | 0.4587 | {'precision': 0.6081277213352685, 'recall': 0.39416745061147695, 'f1-score': 0.478310502283105, 'support': 4252.0} | {'precision': 0.7005473025801408, 'recall': 0.8212648945921174, 'f1-score': 0.7561181434599156, 'support': 2182.0} | {'precision': 0.9445551517993201, 'recall': 0.8687870619946092, 'f1-score': 0.905088172526115, 'support': 9275.0} | {'precision': 0.8125, 'recall': 0.9366393442622951, 'f1-score': 0.8701644837039293, 'support': 12200.0} | 0.8224 | {'precision': 0.7664325439286823, 'recall': 0.7552146878651247, 'f1-score': 0.7524203254932662, 'support': 27909.0} | {'precision': 0.8164965537384401, 'recall': 0.8224228743416102, 'f1-score': 0.8131543783763286, 'support': 27909.0} |
76
+ | No log | 4.0 | 164 | 0.4491 | {'precision': 0.5829145728643216, 'recall': 0.6274694261523989, 'f1-score': 0.6043719560539133, 'support': 4252.0} | {'precision': 0.7112758486149044, 'recall': 0.8354720439963337, 'f1-score': 0.7683877766069548, 'support': 2182.0} | {'precision': 0.9357652656621729, 'recall': 0.8905660377358491, 'f1-score': 0.9126063418406806, 'support': 9275.0} | {'precision': 0.881426896667225, 'recall': 0.8627868852459016, 'f1-score': 0.8720072901996521, 'support': 12200.0} | 0.8340 | {'precision': 0.7778456459521561, 'recall': 0.8040735982826209, 'f1-score': 0.7893433411753001, 'support': 27909.0} | {'precision': 0.8407032729174679, 'recall': 0.8340320326776308, 'f1-score': 0.8366234708053201, 'support': 27909.0} |
77
+ | No log | 5.0 | 205 | 0.4611 | {'precision': 0.5805860805860806, 'recall': 0.5964252116650988, 'f1-score': 0.588399071925754, 'support': 4252.0} | {'precision': 0.7489102005231038, 'recall': 0.7873510540788268, 'f1-score': 0.7676496872207329, 'support': 2182.0} | {'precision': 0.9323308270676691, 'recall': 0.8957412398921832, 'f1-score': 0.9136698559331353, 'support': 9275.0} | {'precision': 0.8673800259403373, 'recall': 0.8770491803278688, 'f1-score': 0.8721878056732963, 'support': 12200.0} | 0.8335 | {'precision': 0.7823017835292977, 'recall': 0.7891416714909945, 'f1-score': 0.7854766051882296, 'support': 27909.0} | {'precision': 0.8360091300196414, 'recall': 0.8334945716435559, 'f1-score': 0.8345646069131102, 'support': 27909.0} |
78
+ | No log | 6.0 | 246 | 0.4642 | {'precision': 0.5962333486449242, 'recall': 0.6105362182502352, 'f1-score': 0.6033000232396003, 'support': 4252.0} | {'precision': 0.7385488447507094, 'recall': 0.8350137488542622, 'f1-score': 0.783824478382448, 'support': 2182.0} | {'precision': 0.9409678526484384, 'recall': 0.8867924528301887, 'f1-score': 0.9130772646536413, 'support': 9275.0} | {'precision': 0.8715477443913501, 'recall': 0.8820491803278688, 'f1-score': 0.8767670183729173, 'support': 12200.0} | 0.8386 | {'precision': 0.7868244476088555, 'recall': 0.8035979000656387, 'f1-score': 0.7942421961621517, 'support': 27909.0} | {'precision': 0.8422751475356695, 'recall': 0.8385825360994661, 'f1-score': 0.8399041873394746, 'support': 27909.0} |
79
+ | No log | 7.0 | 287 | 0.4624 | {'precision': 0.5906025179856115, 'recall': 0.617826904985889, 'f1-score': 0.6039080459770114, 'support': 4252.0} | {'precision': 0.7631810193321616, 'recall': 0.7960586617781852, 'f1-score': 0.7792732166890982, 'support': 2182.0} | {'precision': 0.9296403841858387, 'recall': 0.897466307277628, 'f1-score': 0.913270064183444, 'support': 9275.0} | {'precision': 0.8734363502575423, 'recall': 0.875655737704918, 'f1-score': 0.8745446359133887, 'support': 12200.0} | 0.8374 | {'precision': 0.7892150679402886, 'recall': 0.7967519029366551, 'f1-score': 0.7927489906907357, 'support': 27909.0} | {'precision': 0.8404042039171331, 'recall': 0.8374001218245011, 'f1-score': 0.8387335832080923, 'support': 27909.0} |
80
 
81
 
82
  ### Framework versions
meta_data/README_s42_e7.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: allenai/longformer-base-4096
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - essays_su_g
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: longformer-simple
12
+ results:
13
+ - task:
14
+ name: Token Classification
15
+ type: token-classification
16
+ dataset:
17
+ name: essays_su_g
18
+ type: essays_su_g
19
+ config: simple
20
+ split: test
21
+ args: simple
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8374001218245011
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # longformer-simple
32
+
33
+ This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.4624
36
+ - Claim: {'precision': 0.5906025179856115, 'recall': 0.617826904985889, 'f1-score': 0.6039080459770114, 'support': 4252.0}
37
+ - Majorclaim: {'precision': 0.7631810193321616, 'recall': 0.7960586617781852, 'f1-score': 0.7792732166890982, 'support': 2182.0}
38
+ - O: {'precision': 0.9296403841858387, 'recall': 0.897466307277628, 'f1-score': 0.913270064183444, 'support': 9275.0}
39
+ - Premise: {'precision': 0.8734363502575423, 'recall': 0.875655737704918, 'f1-score': 0.8745446359133887, 'support': 12200.0}
40
+ - Accuracy: 0.8374
41
+ - Macro avg: {'precision': 0.7892150679402886, 'recall': 0.7967519029366551, 'f1-score': 0.7927489906907357, 'support': 27909.0}
42
+ - Weighted avg: {'precision': 0.8404042039171331, 'recall': 0.8374001218245011, 'f1-score': 0.8387335832080923, 'support': 27909.0}
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 2e-05
62
+ - train_batch_size: 8
63
+ - eval_batch_size: 8
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 7
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 41 | 0.5869 | {'precision': 0.50130958617077, 'recall': 0.2250705550329257, 'f1-score': 0.310663853270573, 'support': 4252.0} | {'precision': 0.6411985018726591, 'recall': 0.3923006416131989, 'f1-score': 0.48677850440716514, 'support': 2182.0} | {'precision': 0.8172767203513909, 'recall': 0.9027493261455526, 'f1-score': 0.8578893442622951, 'support': 9275.0} | {'precision': 0.7879334257975035, 'recall': 0.931311475409836, 'f1-score': 0.8536438767843726, 'support': 12200.0} | 0.7721 | {'precision': 0.6869295585480809, 'recall': 0.6128579995503783, 'f1-score': 0.6272438946811014, 'support': 27909.0} | {'precision': 0.7425451598936884, 'recall': 0.7720806908165825, 'f1-score': 0.7436480119504476, 'support': 27909.0} |
74
+ | No log | 2.0 | 82 | 0.4605 | {'precision': 0.5800683670786222, 'recall': 0.5188146754468486, 'f1-score': 0.5477343265052762, 'support': 4252.0} | {'precision': 0.679080824088748, 'recall': 0.7855178735105408, 'f1-score': 0.7284317892052699, 'support': 2182.0} | {'precision': 0.9250369696280286, 'recall': 0.8767654986522911, 'f1-score': 0.900254621941769, 'support': 9275.0} | {'precision': 0.8497380970995231, 'recall': 0.8909016393442623, 'f1-score': 0.8698331399303749, 'support': 12200.0} | 0.8213 | {'precision': 0.7584810644737304, 'recall': 0.7679999217384857, 'f1-score': 0.7615634693956725, 'support': 27909.0} | {'precision': 0.8203349361458346, 'recall': 0.8212762908022502, 'f1-score': 0.8198154876923865, 'support': 27909.0} |
75
+ | No log | 3.0 | 123 | 0.4587 | {'precision': 0.6081277213352685, 'recall': 0.39416745061147695, 'f1-score': 0.478310502283105, 'support': 4252.0} | {'precision': 0.7005473025801408, 'recall': 0.8212648945921174, 'f1-score': 0.7561181434599156, 'support': 2182.0} | {'precision': 0.9445551517993201, 'recall': 0.8687870619946092, 'f1-score': 0.905088172526115, 'support': 9275.0} | {'precision': 0.8125, 'recall': 0.9366393442622951, 'f1-score': 0.8701644837039293, 'support': 12200.0} | 0.8224 | {'precision': 0.7664325439286823, 'recall': 0.7552146878651247, 'f1-score': 0.7524203254932662, 'support': 27909.0} | {'precision': 0.8164965537384401, 'recall': 0.8224228743416102, 'f1-score': 0.8131543783763286, 'support': 27909.0} |
76
+ | No log | 4.0 | 164 | 0.4491 | {'precision': 0.5829145728643216, 'recall': 0.6274694261523989, 'f1-score': 0.6043719560539133, 'support': 4252.0} | {'precision': 0.7112758486149044, 'recall': 0.8354720439963337, 'f1-score': 0.7683877766069548, 'support': 2182.0} | {'precision': 0.9357652656621729, 'recall': 0.8905660377358491, 'f1-score': 0.9126063418406806, 'support': 9275.0} | {'precision': 0.881426896667225, 'recall': 0.8627868852459016, 'f1-score': 0.8720072901996521, 'support': 12200.0} | 0.8340 | {'precision': 0.7778456459521561, 'recall': 0.8040735982826209, 'f1-score': 0.7893433411753001, 'support': 27909.0} | {'precision': 0.8407032729174679, 'recall': 0.8340320326776308, 'f1-score': 0.8366234708053201, 'support': 27909.0} |
77
+ | No log | 5.0 | 205 | 0.4611 | {'precision': 0.5805860805860806, 'recall': 0.5964252116650988, 'f1-score': 0.588399071925754, 'support': 4252.0} | {'precision': 0.7489102005231038, 'recall': 0.7873510540788268, 'f1-score': 0.7676496872207329, 'support': 2182.0} | {'precision': 0.9323308270676691, 'recall': 0.8957412398921832, 'f1-score': 0.9136698559331353, 'support': 9275.0} | {'precision': 0.8673800259403373, 'recall': 0.8770491803278688, 'f1-score': 0.8721878056732963, 'support': 12200.0} | 0.8335 | {'precision': 0.7823017835292977, 'recall': 0.7891416714909945, 'f1-score': 0.7854766051882296, 'support': 27909.0} | {'precision': 0.8360091300196414, 'recall': 0.8334945716435559, 'f1-score': 0.8345646069131102, 'support': 27909.0} |
78
+ | No log | 6.0 | 246 | 0.4642 | {'precision': 0.5962333486449242, 'recall': 0.6105362182502352, 'f1-score': 0.6033000232396003, 'support': 4252.0} | {'precision': 0.7385488447507094, 'recall': 0.8350137488542622, 'f1-score': 0.783824478382448, 'support': 2182.0} | {'precision': 0.9409678526484384, 'recall': 0.8867924528301887, 'f1-score': 0.9130772646536413, 'support': 9275.0} | {'precision': 0.8715477443913501, 'recall': 0.8820491803278688, 'f1-score': 0.8767670183729173, 'support': 12200.0} | 0.8386 | {'precision': 0.7868244476088555, 'recall': 0.8035979000656387, 'f1-score': 0.7942421961621517, 'support': 27909.0} | {'precision': 0.8422751475356695, 'recall': 0.8385825360994661, 'f1-score': 0.8399041873394746, 'support': 27909.0} |
79
+ | No log | 7.0 | 287 | 0.4624 | {'precision': 0.5906025179856115, 'recall': 0.617826904985889, 'f1-score': 0.6039080459770114, 'support': 4252.0} | {'precision': 0.7631810193321616, 'recall': 0.7960586617781852, 'f1-score': 0.7792732166890982, 'support': 2182.0} | {'precision': 0.9296403841858387, 'recall': 0.897466307277628, 'f1-score': 0.913270064183444, 'support': 9275.0} | {'precision': 0.8734363502575423, 'recall': 0.875655737704918, 'f1-score': 0.8745446359133887, 'support': 12200.0} | 0.8374 | {'precision': 0.7892150679402886, 'recall': 0.7967519029366551, 'f1-score': 0.7927489906907357, 'support': 27909.0} | {'precision': 0.8404042039171331, 'recall': 0.8374001218245011, 'f1-score': 0.8387335832080923, 'support': 27909.0} |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.37.2
85
+ - Pytorch 2.2.0+cu121
86
+ - Datasets 2.17.0
87
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:10f4503b68bd4888eeb5a286ef0bd47e24c07ecfe01634d93ebffa8c8b600ad0
3
  size 592324828
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30f305587ff6545597b5296b28378ab26a4416dc09e0081f2ee57c1edba11f55
3
  size 592324828