Theoreticallyhugo
commited on
trainer: training complete at 2024-02-19 19:45:35.339611.
Browse files- README.md +16 -17
- meta_data/README_s42_e4.md +84 -0
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Claim: {'precision': 0.
|
37 |
-
- Majorclaim: {'precision': 0.
|
38 |
-
- O: {'precision': 0.
|
39 |
-
- Premise: {'precision': 0.
|
40 |
-
- Accuracy: 0.
|
41 |
-
- Macro avg: {'precision': 0.
|
42 |
-
- Weighted avg: {'precision': 0.
|
43 |
|
44 |
## Model description
|
45 |
|
@@ -64,17 +64,16 @@ The following hyperparameters were used during training:
|
|
64 |
- seed: 42
|
65 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
- lr_scheduler_type: linear
|
67 |
-
- num_epochs:
|
68 |
|
69 |
### Training results
|
70 |
|
71 |
-
| Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim
|
72 |
-
|
73 |
-
| No log | 1.0 | 41 | 0.
|
74 |
-
| No log | 2.0 | 82 | 0.
|
75 |
-
| No log | 3.0 | 123 | 0.
|
76 |
-
| No log | 4.0 | 164 | 0.
|
77 |
-
| No log | 5.0 | 205 | 0.4397 | {'precision': 0.5897372943776087, 'recall': 0.5649106302916275, 'f1-score': 0.5770570570570571, 'support': 4252.0} | {'precision': 0.7365996649916248, 'recall': 0.806141154903758, 'f1-score': 0.7698030634573303, 'support': 2182.0} | {'precision': 0.9290423511006817, 'recall': 0.8963881401617251, 'f1-score': 0.9124231782265146, 'support': 9275.0} | {'precision': 0.8642291383310665, 'recall': 0.8854098360655738, 'f1-score': 0.8746912830478967, 'support': 12200.0} | 0.8340 | {'precision': 0.7799021122002454, 'recall': 0.7882124403556711, 'f1-score': 0.7834936454471997, 'support': 27909.0} | {'precision': 0.8339706452686643, 'recall': 0.8340320326776308, 'f1-score': 0.8336850307178961, 'support': 27909.0} |
|
78 |
|
79 |
|
80 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8280482998315956
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4474
|
36 |
+
- Claim: {'precision': 0.5788206979542719, 'recall': 0.5656161806208843, 'f1-score': 0.5721422624003807, 'support': 4252.0}
|
37 |
+
- Majorclaim: {'precision': 0.6985815602836879, 'recall': 0.812557286892759, 'f1-score': 0.751271186440678, 'support': 2182.0}
|
38 |
+
- O: {'precision': 0.93909038572251, 'recall': 0.8793530997304583, 'f1-score': 0.9082405345211582, 'support': 9275.0}
|
39 |
+
- Premise: {'precision': 0.8599473306200622, 'recall': 0.8832786885245901, 'f1-score': 0.8714568759856051, 'support': 12200.0}
|
40 |
+
- Accuracy: 0.8280
|
41 |
+
- Macro avg: {'precision': 0.7691099936451331, 'recall': 0.7852013139421729, 'f1-score': 0.7757777148369556, 'support': 27909.0}
|
42 |
+
- Weighted avg: {'precision': 0.8308026562535961, 'recall': 0.8280482998315956, 'f1-score': 0.828683488238493, 'support': 27909.0}
|
43 |
|
44 |
## Model description
|
45 |
|
|
|
64 |
- seed: 42
|
65 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
- lr_scheduler_type: linear
|
67 |
+
- num_epochs: 4
|
68 |
|
69 |
### Training results
|
70 |
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
|
72 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
73 |
+
| No log | 1.0 | 41 | 0.5887 | {'precision': 0.4995083579154376, 'recall': 0.2389463781749765, 'f1-score': 0.32325803372573975, 'support': 4252.0} | {'precision': 0.5970350404312669, 'recall': 0.4060494958753437, 'f1-score': 0.4833606110201855, 'support': 2182.0} | {'precision': 0.8159389073820247, 'recall': 0.898544474393531, 'f1-score': 0.8552516804351173, 'support': 9275.0} | {'precision': 0.7941031247795726, 'recall': 0.9227868852459017, 'f1-score': 0.8536224741251849, 'support': 12200.0} | 0.7701 | {'precision': 0.6766463576270755, 'recall': 0.6165818084224383, 'f1-score': 0.6288731998265569, 'support': 27909.0} | {'precision': 0.7410703172581077, 'recall': 0.7701458310939123, 'f1-score': 0.7444136132792598, 'support': 27909.0} |
|
74 |
+
| No log | 2.0 | 82 | 0.4737 | {'precision': 0.5664355062413314, 'recall': 0.48024459078080906, 'f1-score': 0.5197912689321624, 'support': 4252.0} | {'precision': 0.707936507936508, 'recall': 0.7153987167736022, 'f1-score': 0.7116480510599499, 'support': 2182.0} | {'precision': 0.9119831504267819, 'recall': 0.8870080862533692, 'f1-score': 0.8993222562308703, 'support': 9275.0} | {'precision': 0.8385838813274201, 'recall': 0.8989344262295081, 'f1-score': 0.8677110530896431, 'support': 12200.0} | 0.8168 | {'precision': 0.7562347614830104, 'recall': 0.7453964550093222, 'f1-score': 0.7496181573281565, 'support': 27909.0} | {'precision': 0.8112998783639159, 'recall': 0.81683327958723, 'f1-score': 0.8130086100235527, 'support': 27909.0} |
|
75 |
+
| No log | 3.0 | 123 | 0.4448 | {'precision': 0.6023609816713265, 'recall': 0.4560206961429915, 'f1-score': 0.5190737518404497, 'support': 4252.0} | {'precision': 0.7517178195144297, 'recall': 0.7520623281393217, 'f1-score': 0.7518900343642613, 'support': 2182.0} | {'precision': 0.9046644403748788, 'recall': 0.9054447439353099, 'f1-score': 0.9050544239681, 'support': 9275.0} | {'precision': 0.8368874773139746, 'recall': 0.9071311475409836, 'f1-score': 0.8705947136563877, 'support': 12200.0} | 0.8257 | {'precision': 0.7739076797186524, 'recall': 0.7551647289396517, 'f1-score': 0.7616532309572996, 'support': 27909.0} | {'precision': 0.8170223613871673, 'recall': 0.8257193020172704, 'f1-score': 0.8192110407653613, 'support': 27909.0} |
|
76 |
+
| No log | 4.0 | 164 | 0.4474 | {'precision': 0.5788206979542719, 'recall': 0.5656161806208843, 'f1-score': 0.5721422624003807, 'support': 4252.0} | {'precision': 0.6985815602836879, 'recall': 0.812557286892759, 'f1-score': 0.751271186440678, 'support': 2182.0} | {'precision': 0.93909038572251, 'recall': 0.8793530997304583, 'f1-score': 0.9082405345211582, 'support': 9275.0} | {'precision': 0.8599473306200622, 'recall': 0.8832786885245901, 'f1-score': 0.8714568759856051, 'support': 12200.0} | 0.8280 | {'precision': 0.7691099936451331, 'recall': 0.7852013139421729, 'f1-score': 0.7757777148369556, 'support': 27909.0} | {'precision': 0.8308026562535961, 'recall': 0.8280482998315956, 'f1-score': 0.828683488238493, 'support': 27909.0} |
|
|
|
77 |
|
78 |
|
79 |
### Framework versions
|
meta_data/README_s42_e4.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: allenai/longformer-base-4096
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- essays_su_g
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: longformer-simple
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Token Classification
|
15 |
+
type: token-classification
|
16 |
+
dataset:
|
17 |
+
name: essays_su_g
|
18 |
+
type: essays_su_g
|
19 |
+
config: simple
|
20 |
+
split: test
|
21 |
+
args: simple
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8280482998315956
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# longformer-simple
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4474
|
36 |
+
- Claim: {'precision': 0.5788206979542719, 'recall': 0.5656161806208843, 'f1-score': 0.5721422624003807, 'support': 4252.0}
|
37 |
+
- Majorclaim: {'precision': 0.6985815602836879, 'recall': 0.812557286892759, 'f1-score': 0.751271186440678, 'support': 2182.0}
|
38 |
+
- O: {'precision': 0.93909038572251, 'recall': 0.8793530997304583, 'f1-score': 0.9082405345211582, 'support': 9275.0}
|
39 |
+
- Premise: {'precision': 0.8599473306200622, 'recall': 0.8832786885245901, 'f1-score': 0.8714568759856051, 'support': 12200.0}
|
40 |
+
- Accuracy: 0.8280
|
41 |
+
- Macro avg: {'precision': 0.7691099936451331, 'recall': 0.7852013139421729, 'f1-score': 0.7757777148369556, 'support': 27909.0}
|
42 |
+
- Weighted avg: {'precision': 0.8308026562535961, 'recall': 0.8280482998315956, 'f1-score': 0.828683488238493, 'support': 27909.0}
|
43 |
+
|
44 |
+
## Model description
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Intended uses & limitations
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training and evaluation data
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Training procedure
|
57 |
+
|
58 |
+
### Training hyperparameters
|
59 |
+
|
60 |
+
The following hyperparameters were used during training:
|
61 |
+
- learning_rate: 2e-05
|
62 |
+
- train_batch_size: 8
|
63 |
+
- eval_batch_size: 8
|
64 |
+
- seed: 42
|
65 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
+
- lr_scheduler_type: linear
|
67 |
+
- num_epochs: 4
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
|
72 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
73 |
+
| No log | 1.0 | 41 | 0.5887 | {'precision': 0.4995083579154376, 'recall': 0.2389463781749765, 'f1-score': 0.32325803372573975, 'support': 4252.0} | {'precision': 0.5970350404312669, 'recall': 0.4060494958753437, 'f1-score': 0.4833606110201855, 'support': 2182.0} | {'precision': 0.8159389073820247, 'recall': 0.898544474393531, 'f1-score': 0.8552516804351173, 'support': 9275.0} | {'precision': 0.7941031247795726, 'recall': 0.9227868852459017, 'f1-score': 0.8536224741251849, 'support': 12200.0} | 0.7701 | {'precision': 0.6766463576270755, 'recall': 0.6165818084224383, 'f1-score': 0.6288731998265569, 'support': 27909.0} | {'precision': 0.7410703172581077, 'recall': 0.7701458310939123, 'f1-score': 0.7444136132792598, 'support': 27909.0} |
|
74 |
+
| No log | 2.0 | 82 | 0.4737 | {'precision': 0.5664355062413314, 'recall': 0.48024459078080906, 'f1-score': 0.5197912689321624, 'support': 4252.0} | {'precision': 0.707936507936508, 'recall': 0.7153987167736022, 'f1-score': 0.7116480510599499, 'support': 2182.0} | {'precision': 0.9119831504267819, 'recall': 0.8870080862533692, 'f1-score': 0.8993222562308703, 'support': 9275.0} | {'precision': 0.8385838813274201, 'recall': 0.8989344262295081, 'f1-score': 0.8677110530896431, 'support': 12200.0} | 0.8168 | {'precision': 0.7562347614830104, 'recall': 0.7453964550093222, 'f1-score': 0.7496181573281565, 'support': 27909.0} | {'precision': 0.8112998783639159, 'recall': 0.81683327958723, 'f1-score': 0.8130086100235527, 'support': 27909.0} |
|
75 |
+
| No log | 3.0 | 123 | 0.4448 | {'precision': 0.6023609816713265, 'recall': 0.4560206961429915, 'f1-score': 0.5190737518404497, 'support': 4252.0} | {'precision': 0.7517178195144297, 'recall': 0.7520623281393217, 'f1-score': 0.7518900343642613, 'support': 2182.0} | {'precision': 0.9046644403748788, 'recall': 0.9054447439353099, 'f1-score': 0.9050544239681, 'support': 9275.0} | {'precision': 0.8368874773139746, 'recall': 0.9071311475409836, 'f1-score': 0.8705947136563877, 'support': 12200.0} | 0.8257 | {'precision': 0.7739076797186524, 'recall': 0.7551647289396517, 'f1-score': 0.7616532309572996, 'support': 27909.0} | {'precision': 0.8170223613871673, 'recall': 0.8257193020172704, 'f1-score': 0.8192110407653613, 'support': 27909.0} |
|
76 |
+
| No log | 4.0 | 164 | 0.4474 | {'precision': 0.5788206979542719, 'recall': 0.5656161806208843, 'f1-score': 0.5721422624003807, 'support': 4252.0} | {'precision': 0.6985815602836879, 'recall': 0.812557286892759, 'f1-score': 0.751271186440678, 'support': 2182.0} | {'precision': 0.93909038572251, 'recall': 0.8793530997304583, 'f1-score': 0.9082405345211582, 'support': 9275.0} | {'precision': 0.8599473306200622, 'recall': 0.8832786885245901, 'f1-score': 0.8714568759856051, 'support': 12200.0} | 0.8280 | {'precision': 0.7691099936451331, 'recall': 0.7852013139421729, 'f1-score': 0.7757777148369556, 'support': 27909.0} | {'precision': 0.8308026562535961, 'recall': 0.8280482998315956, 'f1-score': 0.828683488238493, 'support': 27909.0} |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.37.2
|
82 |
+
- Pytorch 2.2.0+cu121
|
83 |
+
- Datasets 2.17.0
|
84 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592324828
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ee10039d51ce3902b795235f6f878a39ca3b5ea0a3159d71b5bfdc8330eb770
|
3 |
size 592324828
|