Theoreticallyhugo commited on
Commit
2d4d351
·
verified ·
1 Parent(s): 60b9352

trainer: training complete at 2024-02-19 19:45:35.339611.

Browse files
Files changed (3) hide show
  1. README.md +16 -17
  2. meta_data/README_s42_e4.md +84 -0
  3. model.safetensors +1 -1
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.8340320326776308
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.4397
36
- - Claim: {'precision': 0.5897372943776087, 'recall': 0.5649106302916275, 'f1-score': 0.5770570570570571, 'support': 4252.0}
37
- - Majorclaim: {'precision': 0.7365996649916248, 'recall': 0.806141154903758, 'f1-score': 0.7698030634573303, 'support': 2182.0}
38
- - O: {'precision': 0.9290423511006817, 'recall': 0.8963881401617251, 'f1-score': 0.9124231782265146, 'support': 9275.0}
39
- - Premise: {'precision': 0.8642291383310665, 'recall': 0.8854098360655738, 'f1-score': 0.8746912830478967, 'support': 12200.0}
40
- - Accuracy: 0.8340
41
- - Macro avg: {'precision': 0.7799021122002454, 'recall': 0.7882124403556711, 'f1-score': 0.7834936454471997, 'support': 27909.0}
42
- - Weighted avg: {'precision': 0.8339706452686643, 'recall': 0.8340320326776308, 'f1-score': 0.8336850307178961, 'support': 27909.0}
43
 
44
  ## Model description
45
 
@@ -64,17 +64,16 @@ The following hyperparameters were used during training:
64
  - seed: 42
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
- - num_epochs: 5
68
 
69
  ### Training results
70
 
71
- | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
- |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
- | No log | 1.0 | 41 | 0.5888 | {'precision': 0.49844559585492226, 'recall': 0.2262464722483537, 'f1-score': 0.311226140407635, 'support': 4252.0} | {'precision': 0.6139372822299651, 'recall': 0.40375802016498624, 'f1-score': 0.4871440420237766, 'support': 2182.0} | {'precision': 0.8171685569026202, 'recall': 0.9011320754716982, 'f1-score': 0.8570989078603293, 'support': 9275.0} | {'precision': 0.7903744062587315, 'recall': 0.9274590163934426, 'f1-score': 0.8534469754110725, 'support': 12200.0} | 0.7709 | {'precision': 0.6799814603115598, 'recall': 0.6146488960696201, 'f1-score': 0.6272290164257033, 'support': 27909.0} | {'precision': 0.7410085615761669, 'recall': 0.7709341072772224, 'f1-score': 0.7434134981235008, 'support': 27909.0} |
74
- | No log | 2.0 | 82 | 0.4676 | {'precision': 0.574496644295302, 'recall': 0.5032925682031985, 'f1-score': 0.5365425598595963, 'support': 4252.0} | {'precision': 0.6832784184514004, 'recall': 0.7603116406966086, 'f1-score': 0.7197396963123645, 'support': 2182.0} | {'precision': 0.9165271733065506, 'recall': 0.8854986522911051, 'f1-score': 0.9007457775828033, 'support': 9275.0} | {'precision': 0.8488472059398202, 'recall': 0.8902459016393443, 'f1-score': 0.8690538107621524, 'support': 12200.0} | 0.8196 | {'precision': 0.7557873604982683, 'recall': 0.7598371907075642, 'f1-score': 0.7565204611292291, 'support': 27909.0} | {'precision': 0.816596749632328, 'recall': 0.8195564154932101, 'f1-score': 0.8172533792058241, 'support': 27909.0} |
75
- | No log | 3.0 | 123 | 0.4384 | {'precision': 0.6117381489841986, 'recall': 0.44614299153339604, 'f1-score': 0.5159798721610226, 'support': 4252.0} | {'precision': 0.7290375877736472, 'recall': 0.8088909257561869, 'f1-score': 0.7668911579404737, 'support': 2182.0} | {'precision': 0.9303112313937754, 'recall': 0.889487870619946, 'f1-score': 0.9094416579397012, 'support': 9275.0} | {'precision': 0.8289074635697906, 'recall': 0.9185245901639344, 'f1-score': 0.8714180178078463, 'support': 12200.0} | 0.8283 | {'precision': 0.774998607930353, 'recall': 0.7657615945183658, 'f1-score': 0.7659326764622609, 'support': 27909.0} | {'precision': 0.8217126501390813, 'recall': 0.8283349457164355, 'f1-score': 0.8217304137626299, 'support': 27909.0} |
76
- | No log | 4.0 | 164 | 0.4487 | {'precision': 0.5776205218929678, 'recall': 0.6142991533396049, 'f1-score': 0.5953954866651471, 'support': 4252.0} | {'precision': 0.7034400948991696, 'recall': 0.8153070577451879, 'f1-score': 0.7552536616429633, 'support': 2182.0} | {'precision': 0.9331742243436754, 'recall': 0.8852830188679245, 'f1-score': 0.9085979860573199, 'support': 9275.0} | {'precision': 0.8791773778920309, 'recall': 0.8690163934426229, 'f1-score': 0.8740673564450308, 'support': 12200.0} | 0.8314 | {'precision': 0.7733530547569609, 'recall': 0.795976405848835, 'f1-score': 0.7833286227026153, 'support': 27909.0} | {'precision': 0.837439667749803, 'recall': 0.8314163889784657, 'f1-score': 0.8337974548825171, 'support': 27909.0} |
77
- | No log | 5.0 | 205 | 0.4397 | {'precision': 0.5897372943776087, 'recall': 0.5649106302916275, 'f1-score': 0.5770570570570571, 'support': 4252.0} | {'precision': 0.7365996649916248, 'recall': 0.806141154903758, 'f1-score': 0.7698030634573303, 'support': 2182.0} | {'precision': 0.9290423511006817, 'recall': 0.8963881401617251, 'f1-score': 0.9124231782265146, 'support': 9275.0} | {'precision': 0.8642291383310665, 'recall': 0.8854098360655738, 'f1-score': 0.8746912830478967, 'support': 12200.0} | 0.8340 | {'precision': 0.7799021122002454, 'recall': 0.7882124403556711, 'f1-score': 0.7834936454471997, 'support': 27909.0} | {'precision': 0.8339706452686643, 'recall': 0.8340320326776308, 'f1-score': 0.8336850307178961, 'support': 27909.0} |
78
 
79
 
80
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8280482998315956
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.4474
36
+ - Claim: {'precision': 0.5788206979542719, 'recall': 0.5656161806208843, 'f1-score': 0.5721422624003807, 'support': 4252.0}
37
+ - Majorclaim: {'precision': 0.6985815602836879, 'recall': 0.812557286892759, 'f1-score': 0.751271186440678, 'support': 2182.0}
38
+ - O: {'precision': 0.93909038572251, 'recall': 0.8793530997304583, 'f1-score': 0.9082405345211582, 'support': 9275.0}
39
+ - Premise: {'precision': 0.8599473306200622, 'recall': 0.8832786885245901, 'f1-score': 0.8714568759856051, 'support': 12200.0}
40
+ - Accuracy: 0.8280
41
+ - Macro avg: {'precision': 0.7691099936451331, 'recall': 0.7852013139421729, 'f1-score': 0.7757777148369556, 'support': 27909.0}
42
+ - Weighted avg: {'precision': 0.8308026562535961, 'recall': 0.8280482998315956, 'f1-score': 0.828683488238493, 'support': 27909.0}
43
 
44
  ## Model description
45
 
 
64
  - seed: 42
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
+ - num_epochs: 4
68
 
69
  ### Training results
70
 
71
+ | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 41 | 0.5887 | {'precision': 0.4995083579154376, 'recall': 0.2389463781749765, 'f1-score': 0.32325803372573975, 'support': 4252.0} | {'precision': 0.5970350404312669, 'recall': 0.4060494958753437, 'f1-score': 0.4833606110201855, 'support': 2182.0} | {'precision': 0.8159389073820247, 'recall': 0.898544474393531, 'f1-score': 0.8552516804351173, 'support': 9275.0} | {'precision': 0.7941031247795726, 'recall': 0.9227868852459017, 'f1-score': 0.8536224741251849, 'support': 12200.0} | 0.7701 | {'precision': 0.6766463576270755, 'recall': 0.6165818084224383, 'f1-score': 0.6288731998265569, 'support': 27909.0} | {'precision': 0.7410703172581077, 'recall': 0.7701458310939123, 'f1-score': 0.7444136132792598, 'support': 27909.0} |
74
+ | No log | 2.0 | 82 | 0.4737 | {'precision': 0.5664355062413314, 'recall': 0.48024459078080906, 'f1-score': 0.5197912689321624, 'support': 4252.0} | {'precision': 0.707936507936508, 'recall': 0.7153987167736022, 'f1-score': 0.7116480510599499, 'support': 2182.0} | {'precision': 0.9119831504267819, 'recall': 0.8870080862533692, 'f1-score': 0.8993222562308703, 'support': 9275.0} | {'precision': 0.8385838813274201, 'recall': 0.8989344262295081, 'f1-score': 0.8677110530896431, 'support': 12200.0} | 0.8168 | {'precision': 0.7562347614830104, 'recall': 0.7453964550093222, 'f1-score': 0.7496181573281565, 'support': 27909.0} | {'precision': 0.8112998783639159, 'recall': 0.81683327958723, 'f1-score': 0.8130086100235527, 'support': 27909.0} |
75
+ | No log | 3.0 | 123 | 0.4448 | {'precision': 0.6023609816713265, 'recall': 0.4560206961429915, 'f1-score': 0.5190737518404497, 'support': 4252.0} | {'precision': 0.7517178195144297, 'recall': 0.7520623281393217, 'f1-score': 0.7518900343642613, 'support': 2182.0} | {'precision': 0.9046644403748788, 'recall': 0.9054447439353099, 'f1-score': 0.9050544239681, 'support': 9275.0} | {'precision': 0.8368874773139746, 'recall': 0.9071311475409836, 'f1-score': 0.8705947136563877, 'support': 12200.0} | 0.8257 | {'precision': 0.7739076797186524, 'recall': 0.7551647289396517, 'f1-score': 0.7616532309572996, 'support': 27909.0} | {'precision': 0.8170223613871673, 'recall': 0.8257193020172704, 'f1-score': 0.8192110407653613, 'support': 27909.0} |
76
+ | No log | 4.0 | 164 | 0.4474 | {'precision': 0.5788206979542719, 'recall': 0.5656161806208843, 'f1-score': 0.5721422624003807, 'support': 4252.0} | {'precision': 0.6985815602836879, 'recall': 0.812557286892759, 'f1-score': 0.751271186440678, 'support': 2182.0} | {'precision': 0.93909038572251, 'recall': 0.8793530997304583, 'f1-score': 0.9082405345211582, 'support': 9275.0} | {'precision': 0.8599473306200622, 'recall': 0.8832786885245901, 'f1-score': 0.8714568759856051, 'support': 12200.0} | 0.8280 | {'precision': 0.7691099936451331, 'recall': 0.7852013139421729, 'f1-score': 0.7757777148369556, 'support': 27909.0} | {'precision': 0.8308026562535961, 'recall': 0.8280482998315956, 'f1-score': 0.828683488238493, 'support': 27909.0} |
 
77
 
78
 
79
  ### Framework versions
meta_data/README_s42_e4.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: allenai/longformer-base-4096
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - essays_su_g
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: longformer-simple
12
+ results:
13
+ - task:
14
+ name: Token Classification
15
+ type: token-classification
16
+ dataset:
17
+ name: essays_su_g
18
+ type: essays_su_g
19
+ config: simple
20
+ split: test
21
+ args: simple
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8280482998315956
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # longformer-simple
32
+
33
+ This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.4474
36
+ - Claim: {'precision': 0.5788206979542719, 'recall': 0.5656161806208843, 'f1-score': 0.5721422624003807, 'support': 4252.0}
37
+ - Majorclaim: {'precision': 0.6985815602836879, 'recall': 0.812557286892759, 'f1-score': 0.751271186440678, 'support': 2182.0}
38
+ - O: {'precision': 0.93909038572251, 'recall': 0.8793530997304583, 'f1-score': 0.9082405345211582, 'support': 9275.0}
39
+ - Premise: {'precision': 0.8599473306200622, 'recall': 0.8832786885245901, 'f1-score': 0.8714568759856051, 'support': 12200.0}
40
+ - Accuracy: 0.8280
41
+ - Macro avg: {'precision': 0.7691099936451331, 'recall': 0.7852013139421729, 'f1-score': 0.7757777148369556, 'support': 27909.0}
42
+ - Weighted avg: {'precision': 0.8308026562535961, 'recall': 0.8280482998315956, 'f1-score': 0.828683488238493, 'support': 27909.0}
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 2e-05
62
+ - train_batch_size: 8
63
+ - eval_batch_size: 8
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 4
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 41 | 0.5887 | {'precision': 0.4995083579154376, 'recall': 0.2389463781749765, 'f1-score': 0.32325803372573975, 'support': 4252.0} | {'precision': 0.5970350404312669, 'recall': 0.4060494958753437, 'f1-score': 0.4833606110201855, 'support': 2182.0} | {'precision': 0.8159389073820247, 'recall': 0.898544474393531, 'f1-score': 0.8552516804351173, 'support': 9275.0} | {'precision': 0.7941031247795726, 'recall': 0.9227868852459017, 'f1-score': 0.8536224741251849, 'support': 12200.0} | 0.7701 | {'precision': 0.6766463576270755, 'recall': 0.6165818084224383, 'f1-score': 0.6288731998265569, 'support': 27909.0} | {'precision': 0.7410703172581077, 'recall': 0.7701458310939123, 'f1-score': 0.7444136132792598, 'support': 27909.0} |
74
+ | No log | 2.0 | 82 | 0.4737 | {'precision': 0.5664355062413314, 'recall': 0.48024459078080906, 'f1-score': 0.5197912689321624, 'support': 4252.0} | {'precision': 0.707936507936508, 'recall': 0.7153987167736022, 'f1-score': 0.7116480510599499, 'support': 2182.0} | {'precision': 0.9119831504267819, 'recall': 0.8870080862533692, 'f1-score': 0.8993222562308703, 'support': 9275.0} | {'precision': 0.8385838813274201, 'recall': 0.8989344262295081, 'f1-score': 0.8677110530896431, 'support': 12200.0} | 0.8168 | {'precision': 0.7562347614830104, 'recall': 0.7453964550093222, 'f1-score': 0.7496181573281565, 'support': 27909.0} | {'precision': 0.8112998783639159, 'recall': 0.81683327958723, 'f1-score': 0.8130086100235527, 'support': 27909.0} |
75
+ | No log | 3.0 | 123 | 0.4448 | {'precision': 0.6023609816713265, 'recall': 0.4560206961429915, 'f1-score': 0.5190737518404497, 'support': 4252.0} | {'precision': 0.7517178195144297, 'recall': 0.7520623281393217, 'f1-score': 0.7518900343642613, 'support': 2182.0} | {'precision': 0.9046644403748788, 'recall': 0.9054447439353099, 'f1-score': 0.9050544239681, 'support': 9275.0} | {'precision': 0.8368874773139746, 'recall': 0.9071311475409836, 'f1-score': 0.8705947136563877, 'support': 12200.0} | 0.8257 | {'precision': 0.7739076797186524, 'recall': 0.7551647289396517, 'f1-score': 0.7616532309572996, 'support': 27909.0} | {'precision': 0.8170223613871673, 'recall': 0.8257193020172704, 'f1-score': 0.8192110407653613, 'support': 27909.0} |
76
+ | No log | 4.0 | 164 | 0.4474 | {'precision': 0.5788206979542719, 'recall': 0.5656161806208843, 'f1-score': 0.5721422624003807, 'support': 4252.0} | {'precision': 0.6985815602836879, 'recall': 0.812557286892759, 'f1-score': 0.751271186440678, 'support': 2182.0} | {'precision': 0.93909038572251, 'recall': 0.8793530997304583, 'f1-score': 0.9082405345211582, 'support': 9275.0} | {'precision': 0.8599473306200622, 'recall': 0.8832786885245901, 'f1-score': 0.8714568759856051, 'support': 12200.0} | 0.8280 | {'precision': 0.7691099936451331, 'recall': 0.7852013139421729, 'f1-score': 0.7757777148369556, 'support': 27909.0} | {'precision': 0.8308026562535961, 'recall': 0.8280482998315956, 'f1-score': 0.828683488238493, 'support': 27909.0} |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.37.2
82
+ - Pytorch 2.2.0+cu121
83
+ - Datasets 2.17.0
84
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ceca785d1b089249d5a576b419a49abefdde4327f93efa62800634e57d5aa48a
3
  size 592324828
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ee10039d51ce3902b795235f6f878a39ca3b5ea0a3159d71b5bfdc8330eb770
3
  size 592324828