Edit model card

moondream2 is a small vision language model designed to run efficiently on edge devices. Check out the GitHub repository for details, or try it out on the Hugging Face Space!

Benchmarks

Release VQAv2 GQA TextVQA DocVQA TallyQA
(simple/full)
POPE
(rand/pop/adv)
2024-07-23 (latest) 79.4 64.9 60.2 61.9 82.0 / 76.8 91.3 / 89.7 / 86.9
2024-05-20 79.4 63.1 57.2 30.5 82.1 / 76.6 91.5 / 89.6 / 86.2
2024-05-08 79.0 62.7 53.1 30.5 81.6 / 76.1 90.6 / 88.3 / 85.0
2024-04-02 77.7 61.7 49.7 24.3 80.1 / 74.2 -
2024-03-13 76.8 60.6 46.4 22.2 79.6 / 73.3 -
2024-03-06 75.4 59.8 43.1 20.9 79.5 / 73.2 -
2024-03-04 74.2 58.5 36.4 - - -

Usage

pip install transformers einops
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

model_id = "vikhyatk/moondream2"
revision = "2024-07-23"
model = AutoModelForCausalLM.from_pretrained(
    model_id, trust_remote_code=True, revision=revision
)
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)

image = Image.open('<IMAGE_PATH>')
enc_image = model.encode_image(image)
print(model.answer_question(enc_image, "Describe this image.", tokenizer))

The model is updated regularly, so we recommend pinning the model version to a specific release as shown above.

Downloads last month
57
Safetensors
Model size
1.87B params
Tensor type
FP16
·
Inference API
Inference API (serverless) does not yet support model repos that contain custom code.