ThomasSimonini's picture
Initial commit
61f262a
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc3554fa680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc3554fa710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc3554fa7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc3554fa830>", "_build": "<function ActorCriticPolicy._build at 0x7fc3554fa8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc3554fa950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc3554fa9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc3554faa70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc3554fab00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc3554fab90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc3554fac20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc3555468d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu", "log_std_init": -2, "ortho_init": false, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [256, 256], "vf": [256, 256]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 8192, "_total_timesteps": 4000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657882489.70774, "learning_rate": 3e-05, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAral2vgAAAACipok4ZL/lPwAAAABgzSA+AAAAANG5qr4gF469jew6vzuxp78/Fag/1SZQP1Gd/T4C9r2/RAD9vpm2IT+Joww/UWchQNNmRj6Qd0w/0ntoP2YpgD8AAAAAoqaJOEkIiD8AAAAAFqMqPwAAAACFVYc/uY7oPn0qpzyc9T4/XbSvPm24XL+lSoO+DMf/PmLfDb9V6S0/P4AEQL/Njb9V9YO/skKgv5HyjL+dZRU/AAAAAKKmiTguTEM+AAAAAEEHzjwAAAAA2VVJPxVDXT84tA4/DZoyvvxLR76AQ/S9h4CePwQ7Uj9AIQY/+NLBPkanv71eUHW+IRQhv5B3TD+R8oy/9+2PvwAAAACipok41x6zQAAAAADBmdXAAAAAAKslwL92zTzAfuLgwJFoQD7+op9Au76zPy87dsAjzk/A5kHiwK3KHz+vqqJA1kI4QP+BPMCyQqC/0ntoPxsNqj4AAAAAoqaJOLKGYz8AAAAAz4qAPwAAAAAUMWM/fUJXP1FwhD+HRXU+abViv2XfgD0O9J4/NLpiP1J/Cz/YhlQ/imQaP0pEt7/0NM+/kHdMP5HyjL/QivU7AAAAAKKmiTgn9yW+AAAAAOBWOD4AAAAA8pgCv1yPb79Nriy/zSk1P3NOHD9ZHzS/E0WCvsqxAL98inW/4mQAPbfoqD8LZKm+RbfevpB3TD/Se2g/l9FpPwAAAACipok4b3cEvwAAAACrNRU+AAAAAHfvRD/0kgo/n68lvzvtIz+soe89POw+v+ipEj9r8So+rrpUv+vsJT9R3gg/c/4SvwRqFr6yQqC/kfKMv5tqjr0AAAAAoqaJOOnXWb8AAAAArcqHvQAAAADKpKO9jFWaPkHdjT6rTC+/Fq+Cv0/uHz/VqKI+/2TxPkj3Vr51xL6+nwSBPjguJr4lFAM/kHdMP9J7aD+553Q+AAAAAKKmiThQHw6/AAAAAMiREz8AAAAAZ61EP6tgOD+j7aA/BKoEPCgGGMD73gI/KX8xQAo4YT9UKBE/gp2VvqcQEb9LnpE/ARTEvJB3TD+R8oy/+kiAPwAAAACipok4CawfPwAAAADNsDI/AAAAALCzhT+p0oA/OyNBvoVJID9MOVs/c6iMv/srBr+xA3M/0/MJvmgHVz+uGRk/hzExvj2bMT6yQqC/kfKMv/Bikz4AAAAAoqaJOC/pUz8AAAAAlq2FPwAAAABArp8+n0MMvdWQpT5tVwc/PV1RPxUthr4lNc6+4HC9PUGvAj+GIRQ/UqSuPjGmIr8i+0w+kHdMP9J7aD+k/lI/AAAAAKKmiThDsVA/AAAAANi5Pj4AAAAAwuSLP1ThGD9FdhM/ocISP4uhDD1TBQW/VYyTPzXYYD/ilhI/GP3QPtROkj3F8GE8WvY2P7JCoL+R8oy/1FmCPwAAAACipok4VpGrPwAAAABSbXo/AAAAAAq5jD+dd5A/0ZARP2mQUD9uXSA/xjWXvzfpxL6BvY0/ILcSPyeODD+uGRk/FLsUv8XY276yQqC/kfKMvxxBgD8AAAAAoqaJOK8cHj8AAAAAgTo0PwAAAAAheIY/XUgvP3aHSb3X6XQ/bl0gP6cCgb8bcAG+B9CCP8sKG72F90U/4xgZP8GDJb9eRV++skKgv5HyjL+PGYM+AAAAAKKmiTjX9ac+AAAAAM/odT8AAAAAd5MEPxmaPT/sFAA/6bw+Pj/tZj9p3NK+EKYgv1pKIT+KV08/Z/seP6lMUz3093q/kfA/vpB3TD/Se2g/1FmCPwAAAACipok4VpGrPwAAAABSbXo/AAAAAAq5jD9rf40/0ZARP5OoFz9uXSA/fh+kvjfpxL521S4/ILcSP8bmJT+uGRk/kF9nv8XY276yQqC/kfKMv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAEAAAGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6UYY/AAAAAGNoiT8AAAAAJYcWPQAAAACk83o/AAAAAAepgD8AAAAAB2XIuwAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1VeGPwAAAADbt4M/AAAAAJpoeTwAAAAA4TqBPwAAAAAPyYQ/AAAAADx3vjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgE7reT8AAAAAqdh1PwAAAAC25IE9AAAAACwrdD8AAAAAyEaDPwAAAAD2yY69AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBO5nw/AAAAALutcj8AAAAAXTHlPQAAAADgBXE/AAAAAIQpfj8AAAAA+X1KvAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPSR/PwAAAABSMII/AAAAAO0NGbwAAAAATeqDPwAAAAABbXM/AAAAAOUp4LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDjXbD8AAAAA4YGAPwAAAADluYa9AAAAALP5iD8AAAAAsOt7PwAAAADWRt29AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDCVHo/AAAAAMntfz8AAAAANgjUPQAAAABdAXo/AAAAAAtvhz8AAAAAAcbMvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5UB/PwAAAACArIE/AAAAAIre2z0AAAAACpp1PwAAAABTu4g/AAAAAHCdtrsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMRmbz8AAAAAas14PwAAAAAWpbs9AAAAALRJdj8AAAAATLOIPwAAAAAGB5u9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICWE3s/AAAAAAP+hz8AAAAAN5TjvQAAAAA+P4I/AAAAAP6qgD8AAAAA23GPPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjJeBPwAAAABxZYM/AAAAADlFhj0AAAAAHzKFPwAAAAAEpIU/AAAAAJEWZb0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKcKgz8AAAAAGxOEPwAAAACrF2q9AAAAAEW9fT8AAAAAHvGGPwAAAACGrwg9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIACSYA/AAAAAEnzhT8AAAAAh2vFPQAAAABW7XM/AAAAAANGeT8AAAAAk6DCvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAebCDPwAAAAABFIU/AAAAAD6Z3rwAAAAAIUqBPwAAAADvW4Q/AAAAALHakD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDUJhz8AAAAAFqmAPwAAAADSSe88AAAAALmhbT8AAAAA8YRtPwAAAABoOkO7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBXWH8/AAAAAAUagz8AAAAABr2UPQAAAAA2PW8/AAAAABSLiD8AAAAAlZ7fvAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": 4, "_current_progress_remaining": -1.048, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDyTxmTTvy+MAWyUSxaMAXSUR0A5awUxmCiAdX2UKGgGR0BErfx+az/qaAdLI2gIR0A5b0ngHeJpdX2UKGgGR0AwwOSntOVPaAdLC2gIR0A5c/fwZwXJdX2UKGgGR0A0jy+HrQgLaAdLDmgIR0A5fO32EkB0dX2UKGgGR0A3kHck+otMaAdLEWgIR0A5fWzWwu/UdX2UKGgGR0AzBiQDFId3aAdLC2gIR0A5gU+s5n14dX2UKGgGR0Az313t8eCDaAdLE2gIR0A5hMsH0K7adX2UKGgGR0AugIznA6+4aAdLEGgIR0A5jJQLux8ldX2UKGgGR0Aw5qXnhbW3aAdLDWgIR0A5kcZtNzsAdX2UKGgGR0A2CozeoDPoaAdLD2gIR0A5lAiml67edX2UKGgGR0BAJzi83++/aAdLG2gIR0A5mxWkrPMTdX2UKGgGR0A8bKyv9tMxaAdLFmgIR0A5m0QbuMMrdX2UKGgGR0BAjsuOCGvfaAdLIGgIR0A5m40uUUwjdX2UKGgGR0A0ll7MPjGUaAdLD2gIR0A5nBqKxcFAdX2UKGgGR0Aw6Sh8IAwPaAdLCmgIR0A5q/vv0AcUdX2UKGgGR0A6cEYO2AoYaAdLFWgIR0A5s/JNj9XLdX2UKGgGR0Ayl2BreqJeaAdLDmgIR0A5uI2OyVv/dX2UKGgGR0AyYs5GSZBtaAdLDGgIR0A5v5hz/6wddX2UKGgGR0A/7L7oB7u2aAdLGmgIR0A5wP4EfT1DdX2UKGgGR0A8z0IkZ75VaAdLFWgIR0A5yYMvysjndX2UKGgGR0AyWApazNUwaAdLDGgIR0A5zaaCtihGdX2UKGgGR0AyHlpXZGrkaAdLDWgIR0A50jRUm2LHdX2UKGgGR0A4/tEXtShraAdLEmgIR0A50nAIppevdX2UKGgGR0AwVJLuhK15aAdLC2gIR0A53A3DNyHVdX2UKGgGR0AyxCbtqpLmaAdLEGgIR0A531gH/tIDdX2UKGgGR0A7YPQOWjXWaAdLGWgIR0A54JoTPBzndX2UKGgGR0AxPWzWwu/UaAdLCmgIR0A55CJXQtz0dX2UKGgGR0A6GI7/4qPPaAdLGWgIR0A56IKtxMnJdX2UKGgGR0A50uSwGGEgaAdLFmgIR0A58GdZq20BdX2UKGgGR0A15zQNTcZcaAdLD2gIR0A59Jz1bqyGdX2UKGgGR0BAufQjUutfaAdLIWgIR0A5+HHFPznSdX2UKGgGR0A9vgF5fMOgaAdLGWgIR0A6BOTJQtSRdX2UKGgGR0AyR+tbLU1AaAdLDGgIR0A6BbpeNT99dX2UKGgGR0AzjIClrM1TaAdLDmgIR0A6CZn+Q2dedX2UKGgGR0AxDyY5T6zmaAdLC2gIR0A6EvDP4VRDdX2UKGgGR0A4Ac8kleF+aAdLEGgIR0A6FxO+IuXedX2UKGgGR0A2E+ZPVNHpaAdLEWgIR0A6JufEn9ehdX2UKGgGR0A3vDdgv115aAdLEmgIR0A6J/oJRfnfdX2UKGgGR0A8kh4dIXj3aAdLGmgIR0A6LxyGSIP9dX2UKGgGR0A1/MwUQCjlaAdLEmgIR0A6NMYMvyskdX2UKGgGR0A8wF7D2rXEaAdLHGgIR0A6QBK+SKWLdX2UKGgGR0A06dZq20AtaAdLDmgIR0A6QHiWE9McdX2UKGgGR0Au7QMx46fbaAdLC2gIR0A6RHcUM5OrdX2UKGgGR0AyX0hePaL5aAdLE2gIR0A6RMVUMoc8dX2UKGgGR0A+ZgzxgAp8aAdLH2gIR0A6RVCojv/jdX2UKGgGR0A2IvR7Z39raAdLFGgIR0A6RXmvGIbgdX2UKGgGR0A1PdnTRYzSaAdLD2gIR0A6SI0ZWJaadX2UKGgGR0A00RcNYr8SaAdLEGgIR0A6SRujynUEdX2UKGgGR0AwZLUTcqOMaAdLCWgIR0A6Vb8FY+0PdX2UKGgGR0A+d/JeVs1saAdLHmgIR0A6X6yjYZl4dX2UKGgGR0A+5yo4uK4yaAdLGWgIR0A6Yppvgm7bdX2UKGgGR0AyEUEgW8AaaAdLDGgIR0A6axVQyhzvdX2UKGgGR0BD17tqpLmIaAdLM2gIR0A6bgRsdkrgdX2UKGgGR0Av0cOLBKtgaAdLCWgIR0A6bro4dZJTdX2UKGgGR0A5kvy9VWCFaAdLEmgIR0A6dyZKFqSHdX2UKGgGR0AxOMHbAUL2aAdLC2gIR0A6d9ZA6dUbdX2UKGgGR0AyNcSoOx0NaAdLDGgIR0A6fGlANXo1dX2UKGgGR0A1XuJUHY6GaAdLFGgIR0A6gHBUJfICdX2UKGgGR0AsOlHjIaLoaAdLCWgIR0A6i2St/4IsdX2UKGgGR0A0wFaSs8xLaAdLDmgIR0A6kz1K5CnhdX2UKGgGR0AzNBJ7LMcIaAdLDGgIR0A6oy31BdD6dX2UKGgGR0A8HJSzgMtsaAdLF2gIR0A6p0oScslLdX2UKGgGR0BBVbayrxRVaAdLImgIR0A6p77bcoH+dX2UKGgGR0A6eLvCuU2UaAdLFmgIR0A6qz3yqdYodX2UKGgGR0A8D4cFQl8gaAdLF2gIR0A6r3gUDdP+dX2UKGgGR0AwlcinpB5YaAdLCWgIR0A6uzRQaaTfdX2UKGgGR0A1TSaVlf7aaAdLEGgIR0A6u5jH4oJBdX2UKGgGR0A3CxPfsNUgaAdLEWgIR0A6xImPYFq0dX2UKGgGR0A+0e+23KB/aAdLGmgIR0A60RUWEbo9dX2UKGgGR0A7SeruIAOsaAdLIWgIR0A61d8iOeasdX2UKGgGR0A+4SYgJTl1aAdLGmgIR0A62qSX+l0pdX2UKGgGR0A+QRbr1M/RaAdLGmgIR0A63ZkCmuTzdX2UKGgGR0A17YukDZDiaAdLE2gIR0A63eVLSNOudX2UKGgGR0A71iRGMGX5aAdLFmgIR0A634Kx9oexdX2UKGgGR0A0IEYO2AoYaAdLDWgIR0A64wiaAnUldX2UKGgGR0A5jYWcjJMhaAdLEmgIR0A674s3AEdOdX2UKGgGR0A3cIdELH+7aAdLE2gIR0A6+Lr5ZbIMdX2UKGgGR0A0lBkI5YHPaAdLD2gIR0A6/GTLW7OFdX2UKGgGR0A5nOcUdq+KaAdLE2gIR0A7ARZlnRLLdX2UKGgGR0AtgMNtqHoHaAdLCGgIR0A7Bcp9ZzPsdX2UKGgGR0BF5Sq2jO9naAdLLWgIR0A7BlVcUucudX2UKGgGR0A2oXQtz0YkaAdLEGgIR0A7CujASFoMdX2UKGgGR0AxZH31zySWaAdLDWgIR0A7C3sXzlLfdX2UKGgGR0BBpIXCTEBKaAdLI2gIR0A7D09yLhrFdX2UKGgGR0AzyeHSF49paAdLDWgIR0A7D7UXpGF0dX2UKGgGR0A0tCI1tO2zaAdLDWgIR0A7Fv8ZUDMedX2UKGgGR0AzlNAkcCHRaAdLD2gIR0A7Hv8qFyq/dX2UKGgGR0A4PgzP8hs7aAdLEWgIR0A7JIiTt9hJdX2UKGgGR0Aygvy9VWCFaAdLDmgIR0A7LPyCnP3SdX2UKGgGR0Awh7fpD/lyaAdLD2gIR0A7PNc4YJmedX2UKGgGR0BAN7Egntv5aAdLI2gIR0A7PX531SOzdX2UKGgGR0A1DdNnGsFMaAdLEGgIR0A7PdtEXtSidX2UKGgGR0AuXyJ9AooeaAdLCGgIR0A7QR5kbxVidX2UKGgGR0A/+BKL876paAdLGWgIR0A7SwIMSbpedX2UKGgGR0A11lP8AJb/aAdLEWgIR0A7To6CDmKZdX2UKGgGR0A/OmDDjzZpaAdLI2gIR0A7UjxkNFz/dX2UKGgGR0A23c7yQPqcaAdLEGgIR0A7U0se4kNXdX2UKGgGR0AyiIHkcS5BaAdLC2gIR0A7U+yZ8a4udX2UKGgGR0A3t0vGp++eaAdLEmgIR0A7WD4gzP8idX2UKGgGR0A29R4QjD8+aAdLEWgIR0A7WImPYFq0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.92, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}