Edit model card

CS337_finetune_wav2vec_base

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1925
  • Accuracy: 0.6574

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.97 28 2.0354 0.1612
No log 1.98 57 1.9414 0.3769
No log 2.99 86 1.7627 0.4911
1.8976 4.0 115 1.6221 0.5799
1.8976 4.97 143 1.5168 0.6117
1.8976 5.98 172 1.4421 0.6345
1.8976 6.99 201 1.3921 0.6129
1.4588 8.0 230 1.3384 0.6332
1.4588 8.97 258 1.3194 0.6371
1.4588 9.98 287 1.2695 0.6536
1.4588 10.99 316 1.2573 0.6371
1.2555 12.0 345 1.2339 0.6574
1.2555 12.97 373 1.2325 0.6472
1.2555 13.98 402 1.2141 0.6586
1.2555 14.99 431 1.2057 0.6650
1.1606 16.0 460 1.2044 0.6459
1.1606 16.97 488 1.2027 0.6459
1.1606 17.98 517 1.1929 0.6548
1.1606 18.99 546 1.1929 0.6574
1.1606 19.48 560 1.1925 0.6574

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
16
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ThuyNT03/CS337_finetune_wav2vec_base

Finetuned
(650)
this model