metadata
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: PhoBERT-Final_Mixed-aug_insert_BERT-1
results: []
PhoBERT-Final_Mixed-aug_insert_BERT-1
This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1594
- Accuracy: 0.72
- F1: 0.7195
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 41
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.9312 | 1.0 | 88 | 0.7278 | 0.68 | 0.6701 |
0.6476 | 2.0 | 176 | 0.7024 | 0.71 | 0.7039 |
0.4815 | 3.0 | 264 | 0.7657 | 0.7 | 0.6959 |
0.341 | 4.0 | 352 | 0.8302 | 0.7 | 0.6994 |
0.2368 | 5.0 | 440 | 0.8699 | 0.72 | 0.7229 |
0.1705 | 6.0 | 528 | 1.0489 | 0.71 | 0.7094 |
0.1169 | 7.0 | 616 | 1.1685 | 0.71 | 0.7094 |
0.1176 | 8.0 | 704 | 1.1594 | 0.72 | 0.7195 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3