metadata
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: PhoBERT-Final_Mixed-train-1
results: []
PhoBERT-Final_Mixed-train-1
This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8720
- Accuracy: 0.71
- F1: 0.7085
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 41
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.0125 | 1.0 | 44 | 0.8552 | 0.63 | 0.5142 |
0.7443 | 2.0 | 88 | 0.6888 | 0.7 | 0.6941 |
0.5851 | 3.0 | 132 | 0.6873 | 0.72 | 0.7164 |
0.4457 | 4.0 | 176 | 0.7423 | 0.7 | 0.7021 |
0.374 | 5.0 | 220 | 0.7960 | 0.71 | 0.7019 |
0.2885 | 6.0 | 264 | 0.8073 | 0.7 | 0.7016 |
0.2711 | 7.0 | 308 | 0.8329 | 0.71 | 0.7088 |
0.2317 | 8.0 | 352 | 0.8720 | 0.71 | 0.7085 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3