my_distilbert_model / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
26672c5
|
raw
history blame
2.31 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - rotten_tomatoes_movie_review
metrics:
  - accuracy
  - f1
  - precision
  - recall
base_model: distilbert-base-uncased
model-index:
  - name: my_distilbert_model
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: rotten_tomatoes_movie_review
          type: rotten_tomatoes_movie_review
          config: default
          split: test
          args: default
        metrics:
          - type: accuracy
            value: 0.8433395872420263
            name: Accuracy
          - type: f1
            value: 0.8433361406139583
            name: F1
          - type: precision
            value: 0.8433698039878337
            name: Precision
          - type: recall
            value: 0.8433395872420263
            name: Recall

my_distilbert_model

This model is a fine-tuned version of distilbert-base-uncased on the rotten_tomatoes_movie_review dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4418
  • Accuracy: 0.8433
  • F1: 0.8433
  • Precision: 0.8434
  • Recall: 0.8433

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 267 0.3990 0.8246 0.8243 0.8269 0.8246
0.3534 2.0 534 0.3951 0.8452 0.8452 0.8452 0.8452
0.3534 3.0 801 0.4418 0.8433 0.8433 0.8434 0.8433

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3