metadata
library_name: peft
tags:
- parquet
- text-classification
datasets:
- ag_news
metrics:
- accuracy
base_model: Splend1dchan/bert-base-uncased-slue-goldtrascription-e3-lr1e-4
model-index:
- name: >-
Splend1dchan_bert-base-uncased-slue-goldtrascription-e3-lr1e-4-finetuned-lora-ag_news
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- type: accuracy
value: 0.9336842105263158
name: accuracy
Splend1dchan_bert-base-uncased-slue-goldtrascription-e3-lr1e-4-finetuned-lora-ag_news
This model is a fine-tuned version of Splend1dchan/bert-base-uncased-slue-goldtrascription-e3-lr1e-4 on the ag_news dataset. It achieves the following results on the evaluation set:
- accuracy: 0.9337
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
accuracy | train_loss | epoch |
---|---|---|
0.1866 | None | 0 |
0.9207 | 0.3037 | 0 |
0.9275 | 0.2207 | 1 |
0.9307 | 0.2027 | 2 |
0.9337 | 0.1922 | 3 |
Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2