SentenceTransformer based on cross-encoder/ms-marco-MiniLM-L-6-v2
This is a sentence-transformers model finetuned from cross-encoder/ms-marco-MiniLM-L-6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cross-encoder/ms-marco-MiniLM-L-6-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Trelis/ms-marco-MiniLM-L-6-v2-2-cst-ep-MNRLtriplets-2e-5-batch32-gpu-overlap")
# Run inference
sentences = [
'What is the minimum number of digits allowed for identifying numbers according to clause 4.3.1?',
'2. 2 teams playing unregistered players are liable to forfeit any match in which unregistered players have competed. fit playing rules - 5th edition copyright © touch football australia 2020 5 3 the ball 3. 1 the game is played with an oval, inflated ball of a shape, colour and size approved by fit or the nta. 3. 2 the ball shall be inflated to the manufacturers ’ recommended air pressure. 3. 3 the referee shall immediately pause the match if the size and shape of the ball no longer complies with clauses 3. 1 or 3. 2 to allow for the ball to replaced or the issue rectified. 3. 4 the ball must not be hidden under player attire. 4 playing uniform 4. 1 participating players are to be correctly attired in matching team uniforms 4. 2 playing uniforms consist of shirt, singlet or other item as approved by the nta or nta competition provider, shorts and / or tights and socks. 4. 3 all players are to wear a unique identifying number not less than 16cm in height, clearly displayed on the rear of the playing top. 4. 3. 1 identifying numbers must feature no more than two ( 2 ) digits.',
'24. 5 for the avoidance of doubt for clauses 24. 3 and 24. 4 the non - offending team will retain a numerical advantage on the field of play during the drop - off. 25 match officials 25. 1 the referee is the sole judge on all match related matters inside the perimeter for the duration of a match, has jurisdiction over all players, coaches and officials and is required to : 25. 1. 1 inspect the field of play, line markings and markers prior to the commencement of the match to ensure the safety of all participants. 25. 1. 2 adjudicate on the rules of the game ; 25. 1. 3 impose any sanction necessary to control the match ; 25. 1. 4 award tries and record the progressive score ; 25. 1. 5 maintain a count of touches during each possession ; 25. 1. 6 award penalties for infringements against the rules ; and 25. 1. 7 report to the relevant competition administration any sin bins, dismissals or injuries to any participant sustained during a match. 25. 2 only team captains are permitted to seek clarification of a decision directly from the referee. an approach may only be made during a break in play or at the discretion of the referee.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 2lr_scheduler_type
: constantwarmup_ratio
: 0.3bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: constantlr_scheduler_kwargs
: {}warmup_ratio
: 0.3warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0066 | 2 | 4.4256 | - |
0.0131 | 4 | 4.1504 | - |
0.0197 | 6 | 4.0494 | - |
0.0262 | 8 | 4.0447 | - |
0.0328 | 10 | 3.9851 | - |
0.0393 | 12 | 3.9284 | - |
0.0459 | 14 | 3.9155 | - |
0.0525 | 16 | 3.8791 | - |
0.0590 | 18 | 3.8663 | - |
0.0656 | 20 | 3.9012 | - |
0.0721 | 22 | 3.8999 | - |
0.0787 | 24 | 3.7895 | - |
0.0852 | 26 | 3.7235 | - |
0.0918 | 28 | 3.7938 | - |
0.0984 | 30 | 3.5057 | - |
0.1049 | 32 | 3.5776 | - |
0.1115 | 34 | 3.5092 | - |
0.1180 | 36 | 3.7226 | - |
0.1246 | 38 | 3.5426 | - |
0.1311 | 40 | 3.7318 | - |
0.1377 | 42 | 3.529 | - |
0.1443 | 44 | 3.5977 | - |
0.1508 | 46 | 3.6484 | - |
0.1574 | 48 | 3.5026 | - |
0.1639 | 50 | 3.4568 | - |
0.1705 | 52 | 3.6119 | - |
0.1770 | 54 | 3.4206 | - |
0.1836 | 56 | 3.3701 | - |
0.1902 | 58 | 3.3232 | - |
0.1967 | 60 | 3.3398 | - |
0.2033 | 62 | 3.333 | - |
0.2098 | 64 | 3.3587 | - |
0.2164 | 66 | 3.1304 | - |
0.2230 | 68 | 3.0618 | - |
0.2295 | 70 | 3.145 | - |
0.2361 | 72 | 3.2074 | - |
0.2426 | 74 | 3.0436 | - |
0.2492 | 76 | 3.0572 | - |
0.2525 | 77 | - | 3.0810 |
0.2557 | 78 | 3.1225 | - |
0.2623 | 80 | 2.8197 | - |
0.2689 | 82 | 2.8979 | - |
0.2754 | 84 | 2.7827 | - |
0.2820 | 86 | 2.9472 | - |
0.2885 | 88 | 2.918 | - |
0.2951 | 90 | 2.7035 | - |
0.3016 | 92 | 2.6876 | - |
0.3082 | 94 | 2.8322 | - |
0.3148 | 96 | 2.6335 | - |
0.3213 | 98 | 2.3754 | - |
0.3279 | 100 | 3.0978 | - |
0.3344 | 102 | 2.4946 | - |
0.3410 | 104 | 2.5085 | - |
0.3475 | 106 | 2.7456 | - |
0.3541 | 108 | 2.3934 | - |
0.3607 | 110 | 2.3222 | - |
0.3672 | 112 | 2.4773 | - |
0.3738 | 114 | 2.6684 | - |
0.3803 | 116 | 2.2435 | - |
0.3869 | 118 | 2.243 | - |
0.3934 | 120 | 2.228 | - |
0.4 | 122 | 2.4652 | - |
0.4066 | 124 | 2.2113 | - |
0.4131 | 126 | 2.0805 | - |
0.4197 | 128 | 2.5041 | - |
0.4262 | 130 | 2.4489 | - |
0.4328 | 132 | 2.2474 | - |
0.4393 | 134 | 2.0252 | - |
0.4459 | 136 | 2.257 | - |
0.4525 | 138 | 1.9381 | - |
0.4590 | 140 | 2.0183 | - |
0.4656 | 142 | 2.1021 | - |
0.4721 | 144 | 2.1508 | - |
0.4787 | 146 | 1.9669 | - |
0.4852 | 148 | 1.7468 | - |
0.4918 | 150 | 1.8776 | - |
0.4984 | 152 | 1.8081 | - |
0.5049 | 154 | 1.6799 | 1.6088 |
0.5115 | 156 | 1.9628 | - |
0.5180 | 158 | 1.8253 | - |
0.5246 | 160 | 1.7791 | - |
0.5311 | 162 | 1.8463 | - |
0.5377 | 164 | 1.6357 | - |
0.5443 | 166 | 1.6531 | - |
0.5508 | 168 | 1.6747 | - |
0.5574 | 170 | 1.5666 | - |
0.5639 | 172 | 1.7272 | - |
0.5705 | 174 | 1.6045 | - |
0.5770 | 176 | 1.3786 | - |
0.5836 | 178 | 1.6547 | - |
0.5902 | 180 | 1.6416 | - |
0.5967 | 182 | 1.4796 | - |
0.6033 | 184 | 1.4595 | - |
0.6098 | 186 | 1.4106 | - |
0.6164 | 188 | 1.4844 | - |
0.6230 | 190 | 1.4581 | - |
0.6295 | 192 | 1.4922 | - |
0.6361 | 194 | 1.2978 | - |
0.6426 | 196 | 1.2612 | - |
0.6492 | 198 | 1.4725 | - |
0.6557 | 200 | 1.3162 | - |
0.6623 | 202 | 1.3736 | - |
0.6689 | 204 | 1.4553 | - |
0.6754 | 206 | 1.4011 | - |
0.6820 | 208 | 1.2523 | - |
0.6885 | 210 | 1.3732 | - |
0.6951 | 212 | 1.3721 | - |
0.7016 | 214 | 1.5262 | - |
0.7082 | 216 | 1.2631 | - |
0.7148 | 218 | 1.6174 | - |
0.7213 | 220 | 1.4252 | - |
0.7279 | 222 | 1.3527 | - |
0.7344 | 224 | 1.1969 | - |
0.7410 | 226 | 1.2901 | - |
0.7475 | 228 | 1.4379 | - |
0.7541 | 230 | 1.1332 | - |
0.7574 | 231 | - | 1.0046 |
0.7607 | 232 | 1.3693 | - |
0.7672 | 234 | 1.3097 | - |
0.7738 | 236 | 1.2314 | - |
0.7803 | 238 | 1.0873 | - |
0.7869 | 240 | 1.2882 | - |
0.7934 | 242 | 1.1723 | - |
0.8 | 244 | 1.1748 | - |
0.8066 | 246 | 1.2916 | - |
0.8131 | 248 | 1.0894 | - |
0.8197 | 250 | 1.2299 | - |
0.8262 | 252 | 1.207 | - |
0.8328 | 254 | 1.1361 | - |
0.8393 | 256 | 1.1323 | - |
0.8459 | 258 | 1.0927 | - |
0.8525 | 260 | 1.1433 | - |
0.8590 | 262 | 1.1088 | - |
0.8656 | 264 | 1.1384 | - |
0.8721 | 266 | 1.0962 | - |
0.8787 | 268 | 1.1878 | - |
0.8852 | 270 | 1.0113 | - |
0.8918 | 272 | 1.1411 | - |
0.8984 | 274 | 1.0289 | - |
0.9049 | 276 | 1.0163 | - |
0.9115 | 278 | 1.2859 | - |
0.9180 | 280 | 0.9449 | - |
0.9246 | 282 | 1.0941 | - |
0.9311 | 284 | 1.0908 | - |
0.9377 | 286 | 1.1028 | - |
0.9443 | 288 | 1.0633 | - |
0.9508 | 290 | 1.1004 | - |
0.9574 | 292 | 1.0483 | - |
0.9639 | 294 | 1.0064 | - |
0.9705 | 296 | 1.0088 | - |
0.9770 | 298 | 1.0068 | - |
0.9836 | 300 | 1.1903 | - |
0.9902 | 302 | 0.9401 | - |
0.9967 | 304 | 0.8369 | - |
1.0033 | 306 | 0.5046 | - |
1.0098 | 308 | 1.0626 | 0.8660 |
1.0164 | 310 | 0.9587 | - |
1.0230 | 312 | 1.0565 | - |
1.0295 | 314 | 1.1329 | - |
1.0361 | 316 | 1.1857 | - |
1.0426 | 318 | 0.9777 | - |
1.0492 | 320 | 0.9883 | - |
1.0557 | 322 | 0.9076 | - |
1.0623 | 324 | 0.7942 | - |
1.0689 | 326 | 1.1952 | - |
1.0754 | 328 | 0.9726 | - |
1.0820 | 330 | 1.0663 | - |
1.0885 | 332 | 1.0337 | - |
1.0951 | 334 | 0.9522 | - |
1.1016 | 336 | 0.9813 | - |
1.1082 | 338 | 0.9057 | - |
1.1148 | 340 | 1.0076 | - |
1.1213 | 342 | 0.8557 | - |
1.1279 | 344 | 0.9341 | - |
1.1344 | 346 | 0.9188 | - |
1.1410 | 348 | 1.091 | - |
1.1475 | 350 | 0.8205 | - |
1.1541 | 352 | 1.0509 | - |
1.1607 | 354 | 0.9201 | - |
1.1672 | 356 | 1.0741 | - |
1.1738 | 358 | 0.8662 | - |
1.1803 | 360 | 0.9468 | - |
1.1869 | 362 | 0.8604 | - |
1.1934 | 364 | 0.8141 | - |
1.2 | 366 | 0.9475 | - |
1.2066 | 368 | 0.8407 | - |
1.2131 | 370 | 0.764 | - |
1.2197 | 372 | 0.798 | - |
1.2262 | 374 | 0.8205 | - |
1.2328 | 376 | 0.7995 | - |
1.2393 | 378 | 0.9305 | - |
1.2459 | 380 | 0.858 | - |
1.2525 | 382 | 0.8465 | - |
1.2590 | 384 | 0.7691 | - |
1.2623 | 385 | - | 0.7879 |
1.2656 | 386 | 1.0073 | - |
1.2721 | 388 | 0.8026 | - |
1.2787 | 390 | 0.8108 | - |
1.2852 | 392 | 0.7783 | - |
1.2918 | 394 | 0.8766 | - |
1.2984 | 396 | 0.8576 | - |
1.3049 | 398 | 0.884 | - |
1.3115 | 400 | 0.9547 | - |
1.3180 | 402 | 0.9231 | - |
1.3246 | 404 | 0.8027 | - |
1.3311 | 406 | 0.9117 | - |
1.3377 | 408 | 0.7743 | - |
1.3443 | 410 | 0.8257 | - |
1.3508 | 412 | 0.8738 | - |
1.3574 | 414 | 0.972 | - |
1.3639 | 416 | 0.8297 | - |
1.3705 | 418 | 0.8941 | - |
1.3770 | 420 | 0.8513 | - |
1.3836 | 422 | 0.7588 | - |
1.3902 | 424 | 0.8332 | - |
1.3967 | 426 | 0.7682 | - |
1.4033 | 428 | 0.7916 | - |
1.4098 | 430 | 0.9519 | - |
1.4164 | 432 | 1.0526 | - |
1.4230 | 434 | 0.8724 | - |
1.4295 | 436 | 0.8267 | - |
1.4361 | 438 | 0.7672 | - |
1.4426 | 440 | 0.7977 | - |
1.4492 | 442 | 0.6947 | - |
1.4557 | 444 | 0.9042 | - |
1.4623 | 446 | 0.8971 | - |
1.4689 | 448 | 0.9655 | - |
1.4754 | 450 | 0.8512 | - |
1.4820 | 452 | 0.9421 | - |
1.4885 | 454 | 0.9501 | - |
1.4951 | 456 | 0.8214 | - |
1.5016 | 458 | 0.9335 | - |
1.5082 | 460 | 0.7617 | - |
1.5148 | 462 | 0.8601 | 0.7855 |
1.5213 | 464 | 0.757 | - |
1.5279 | 466 | 0.7389 | - |
1.5344 | 468 | 0.8146 | - |
1.5410 | 470 | 0.9235 | - |
1.5475 | 472 | 0.9901 | - |
1.5541 | 474 | 0.9624 | - |
1.5607 | 476 | 0.8909 | - |
1.5672 | 478 | 0.7276 | - |
1.5738 | 480 | 0.9444 | - |
1.5803 | 482 | 0.874 | - |
1.5869 | 484 | 0.7985 | - |
1.5934 | 486 | 0.9335 | - |
1.6 | 488 | 0.8108 | - |
1.6066 | 490 | 0.7779 | - |
1.6131 | 492 | 0.8807 | - |
1.6197 | 494 | 0.8146 | - |
1.6262 | 496 | 0.9218 | - |
1.6328 | 498 | 0.8439 | - |
1.6393 | 500 | 0.7348 | - |
1.6459 | 502 | 0.8533 | - |
1.6525 | 504 | 0.7695 | - |
1.6590 | 506 | 0.7911 | - |
1.6656 | 508 | 0.837 | - |
1.6721 | 510 | 0.731 | - |
1.6787 | 512 | 0.911 | - |
1.6852 | 514 | 0.7963 | - |
1.6918 | 516 | 0.7719 | - |
1.6984 | 518 | 0.8011 | - |
1.7049 | 520 | 0.7428 | - |
1.7115 | 522 | 0.8159 | - |
1.7180 | 524 | 0.7833 | - |
1.7246 | 526 | 0.7934 | - |
1.7311 | 528 | 0.7854 | - |
1.7377 | 530 | 0.8398 | - |
1.7443 | 532 | 0.7875 | - |
1.7508 | 534 | 0.7282 | - |
1.7574 | 536 | 0.8269 | - |
1.7639 | 538 | 0.8033 | - |
1.7672 | 539 | - | 0.7595 |
1.7705 | 540 | 0.9471 | - |
1.7770 | 542 | 0.941 | - |
1.7836 | 544 | 0.725 | - |
1.7902 | 546 | 0.8978 | - |
1.7967 | 548 | 0.8361 | - |
1.8033 | 550 | 0.7092 | - |
1.8098 | 552 | 0.809 | - |
1.8164 | 554 | 0.9399 | - |
1.8230 | 556 | 0.769 | - |
1.8295 | 558 | 0.7381 | - |
1.8361 | 560 | 0.7554 | - |
1.8426 | 562 | 0.8553 | - |
1.8492 | 564 | 0.919 | - |
1.8557 | 566 | 0.7479 | - |
1.8623 | 568 | 0.8381 | - |
1.8689 | 570 | 0.7911 | - |
1.8754 | 572 | 0.8076 | - |
1.8820 | 574 | 0.7868 | - |
1.8885 | 576 | 0.9147 | - |
1.8951 | 578 | 0.7271 | - |
1.9016 | 580 | 0.7201 | - |
1.9082 | 582 | 0.7538 | - |
1.9148 | 584 | 0.7522 | - |
1.9213 | 586 | 0.7737 | - |
1.9279 | 588 | 0.7187 | - |
1.9344 | 590 | 0.8713 | - |
1.9410 | 592 | 0.7971 | - |
1.9475 | 594 | 0.8226 | - |
1.9541 | 596 | 0.7074 | - |
1.9607 | 598 | 0.804 | - |
1.9672 | 600 | 0.7259 | - |
1.9738 | 602 | 0.7758 | - |
1.9803 | 604 | 0.8209 | - |
1.9869 | 606 | 0.7918 | - |
1.9934 | 608 | 0.7467 | - |
2.0 | 610 | 0.4324 | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.1.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.17.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Trelis/ms-marco-MiniLM-L-6-v2-2-cst-ep-MNRLtriplets-2e-5-batch32-gpu-overlap
Base model
cross-encoder/ms-marco-MiniLM-L-6-v2