Triangle104's picture
Update README.md
be94f94 verified
metadata
language:
  - en
license: llama3
library_name: transformers
base_model: arcee-ai/Llama-3.1-SuperNova-Lite
datasets:
  - arcee-ai/EvolKit-20k
tags:
  - llama-cpp
  - gguf-my-repo
model-index:
  - name: Llama-3.1-SuperNova-Lite
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 80.17
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 31.57
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 15.48
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 7.49
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 11.67
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 31.97
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
          name: Open LLM Leaderboard

Triangle104/Llama-3.1-SuperNova-Lite-Q4_K_M-GGUF

This model was converted to GGUF format from arcee-ai/Llama-3.1-SuperNova-Lite using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.


Model details:

Overview

Llama-3.1-SuperNova-Lite is an 8B parameter model developed by Arcee.ai, based on the Llama-3.1-8B-Instruct architecture. It is a distilled version of the larger Llama-3.1-405B-Instruct model, leveraging offline logits extracted from the 405B parameter variant. This 8B variation of Llama-3.1-SuperNova maintains high performance while offering exceptional instruction-following capabilities and domain-specific adaptability.

The model was trained using a state-of-the-art distillation pipeline and an instruction dataset generated with EvolKit, ensuring accuracy and efficiency across a wide range of tasks. For more information on its training, visit blog.arcee.ai.

Llama-3.1-SuperNova-Lite excels in both benchmark performance and real-world applications, providing the power of large-scale models in a more compact, efficient form ideal for organizations seeking high performance with reduced resource requirements.


Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Triangle104/Llama-3.1-SuperNova-Lite-Q4_K_M-GGUF --hf-file llama-3.1-supernova-lite-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Triangle104/Llama-3.1-SuperNova-Lite-Q4_K_M-GGUF --hf-file llama-3.1-supernova-lite-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Triangle104/Llama-3.1-SuperNova-Lite-Q4_K_M-GGUF --hf-file llama-3.1-supernova-lite-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Triangle104/Llama-3.1-SuperNova-Lite-Q4_K_M-GGUF --hf-file llama-3.1-supernova-lite-q4_k_m.gguf -c 2048