Edit model card

layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1994
  • Precision: 0.9444
  • Recall: 0.9552
  • F1: 0.9498
  • Accuracy: 0.9606

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.0833 250 0.6541 0.8122 0.8116 0.8119 0.8439
0.9666 4.1667 500 0.3834 0.8660 0.8739 0.8699 0.9029
0.9666 6.25 750 0.2589 0.9136 0.9240 0.9188 0.9398
0.2307 8.3333 1000 0.2444 0.9246 0.9316 0.9281 0.9470
0.2307 10.4167 1250 0.2125 0.9311 0.9445 0.9378 0.9508
0.1035 12.5 1500 0.1878 0.9301 0.9498 0.9398 0.9572
0.1035 14.5833 1750 0.2201 0.9240 0.9422 0.9330 0.9521
0.0557 16.6667 2000 0.1962 0.9393 0.9529 0.9461 0.9601
0.0557 18.75 2250 0.1945 0.9452 0.9567 0.9509 0.9627
0.0388 20.8333 2500 0.1994 0.9444 0.9552 0.9498 0.9606

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Uddarajuvarma/layoutlmv3-finetuned-cord_100

Finetuned
(210)
this model