|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- fhai50032/BeagleLake-7B-Toxic |
|
- Arc53/docsgpt-7b-mistral |
|
base_model: |
|
- fhai50032/BeagleLake-7B-Toxic |
|
- Arc53/docsgpt-7b-mistral |
|
license: apache-2.0 |
|
--- |
|
|
|
# Toctabledog7b |
|
|
|
Toctabledog7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [fhai50032/BeagleLake-7B-Toxic](https://huggingface.co/fhai50032/BeagleLake-7B-Toxic) |
|
* [Arc53/docsgpt-7b-mistral](https://huggingface.co/Arc53/docsgpt-7b-mistral) |
|
|
|
The idea is to get an smart and efficient RAG happy assistant that won't judge you while for what it finds while searching through your lemon collection. |
|
This merge wasn't made to discover facts but ideas. |
|
|
|
It seems okay, but take the results it finds with a pinch of salt. |
|
|
|
Cursory testing with REOR (https://github.com/reorproject/reor) seems positive. YMMV |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: fhai50032/BeagleLake-7B-Toxic |
|
layer_range: [0, 32] |
|
- model: Arc53/docsgpt-7b-mistral |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: fhai50032/BeagleLake-7B-Toxic |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "UniLLMer/Toctabledog7b" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |