esp-to-lsm-model

This model is a fine-tuned version of Helsinki-NLP/opus-mt-es-es on a Spanish Mexican Sign Language (MSL) glosses dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4524
  • Bleu: 68.8807

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu
3.6287 1.0 75 2.6073 14.3097
1.886 2.0 150 1.5408 44.9883
1.2239 3.0 225 1.1446 60.7215
1.0309 4.0 300 0.9445 49.9656
0.7936 5.0 375 0.8136 51.1677
0.6785 6.0 450 0.7128 38.5475
0.571 7.0 525 0.6493 49.2921
0.4767 8.0 600 0.5980 67.6139
0.4361 9.0 675 0.5642 74.1258
0.3873 10.0 750 0.5409 73.4943
0.3141 11.0 825 0.5166 56.0140
0.3238 12.0 900 0.4993 75.9506
0.3202 13.0 975 0.4861 76.3040
0.2779 14.0 1050 0.4757 52.8020
0.2384 15.0 1125 0.4648 67.2947
0.2698 16.0 1200 0.4632 52.5347
0.2495 17.0 1275 0.4568 69.9258
0.2258 18.0 1350 0.4550 69.4897
0.2174 19.0 1425 0.4535 67.6997
0.2184 20.0 1500 0.4524 68.8807

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
100
Safetensors
Model size
61.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for VaniLara/esp-to-lsm-model

Finetuned
(8)
this model