File size: 2,576 Bytes
b452db2
 
 
 
 
e34da3c
 
b452db2
 
 
 
 
 
 
 
 
 
cff1936
e34da3c
 
 
b452db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e34da3c
 
 
 
147def2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e34da3c
 
b452db2
 
 
 
 
cff1936
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-es-es
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: esp-to-lsm-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# esp-to-lsm-model

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-es](https://huggingface.co/Helsinki-NLP/opus-mt-es-es) on a msl glosses dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4524
- Bleu: 68.8807

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 3.6287        | 1.0   | 75   | 2.6073          | 14.3097 |
| 1.886         | 2.0   | 150  | 1.5408          | 44.9883 |
| 1.2239        | 3.0   | 225  | 1.1446          | 60.7215 |
| 1.0309        | 4.0   | 300  | 0.9445          | 49.9656 |
| 0.7936        | 5.0   | 375  | 0.8136          | 51.1677 |
| 0.6785        | 6.0   | 450  | 0.7128          | 38.5475 |
| 0.571         | 7.0   | 525  | 0.6493          | 49.2921 |
| 0.4767        | 8.0   | 600  | 0.5980          | 67.6139 |
| 0.4361        | 9.0   | 675  | 0.5642          | 74.1258 |
| 0.3873        | 10.0  | 750  | 0.5409          | 73.4943 |
| 0.3141        | 11.0  | 825  | 0.5166          | 56.0140 |
| 0.3238        | 12.0  | 900  | 0.4993          | 75.9506 |
| 0.3202        | 13.0  | 975  | 0.4861          | 76.3040 |
| 0.2779        | 14.0  | 1050 | 0.4757          | 52.8020 |
| 0.2384        | 15.0  | 1125 | 0.4648          | 67.2947 |
| 0.2698        | 16.0  | 1200 | 0.4632          | 52.5347 |
| 0.2495        | 17.0  | 1275 | 0.4568          | 69.9258 |
| 0.2258        | 18.0  | 1350 | 0.4550          | 69.4897 |
| 0.2174        | 19.0  | 1425 | 0.4535          | 67.6997 |
| 0.2184        | 20.0  | 1500 | 0.4524          | 68.8807 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1