|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Emo-Codec/CREMA-D_synth |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: distilhubert-tone-classification |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: CREMA-D |
|
type: Emo-Codec/CREMA-D_synth |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6809651474530831 |
|
- name: Precision |
|
type: precision |
|
value: 0.6795129218164245 |
|
- name: Recall |
|
type: recall |
|
value: 0.6809651474530831 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6750238551197275 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-tone-classification |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the CREMA-D dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1796 |
|
- Accuracy: 0.6810 |
|
- Precision: 0.6795 |
|
- Recall: 0.6810 |
|
- F1: 0.6750 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.3122 | 1.0 | 442 | 1.1656 | 0.5737 | 0.5887 | 0.5737 | 0.5679 | |
|
| 1.0131 | 2.0 | 884 | 0.9625 | 0.6461 | 0.6572 | 0.6461 | 0.6399 | |
|
| 0.7817 | 3.0 | 1326 | 1.0005 | 0.6381 | 0.6506 | 0.6381 | 0.6249 | |
|
| 0.6087 | 4.0 | 1768 | 0.9428 | 0.6649 | 0.6572 | 0.6649 | 0.6515 | |
|
| 0.4604 | 5.0 | 2210 | 1.0250 | 0.6622 | 0.6710 | 0.6622 | 0.6545 | |
|
| 0.3164 | 6.0 | 2652 | 1.0814 | 0.6783 | 0.6821 | 0.6783 | 0.6656 | |
|
| 0.2127 | 7.0 | 3094 | 1.1286 | 0.6971 | 0.6991 | 0.6971 | 0.6909 | |
|
| 0.1224 | 8.0 | 3536 | 1.1796 | 0.6810 | 0.6795 | 0.6810 | 0.6750 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|