whisper-small-mr_v6 / README.md
Viraj008's picture
End of training
5524640 verified
|
raw
history blame
2.27 kB
metadata
library_name: transformers
language:
  - mr
license: apache-2.0
base_model: Viraj008/whisper-small-mr_v5
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
  - fsicoli/common_voice_19_0
  - ylacombe/google-marathi
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small MR v6 - Viraj Patil
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: 'Common Voice 17.0, google/fleurs '
          type: mozilla-foundation/common_voice_17_0
          config: mr
          split: None
          args: 'config: mr, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 34.37749933351106

Whisper Small MR v6 - Viraj Patil

This model is a fine-tuned version of Viraj008/whisper-small-mr_v5 on the Common Voice 17.0, google/fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2922
  • Wer: 34.3775

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0307 0.5355 1000 0.2790 36.9235
0.0137 1.0710 2000 0.3011 35.4572
0.015 1.6064 3000 0.2903 35.0240
0.0067 2.1419 4000 0.2922 34.3775

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0