VladS159's picture
End of training
54ade53 verified
metadata
language:
  - ro
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - VladS159/common_voice_17_0_romanian_speech_synthesis
metrics:
  - wer
model-index:
  - name: Whisper Small Ro - Sarbu Vlad - multi gpu --> 3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0 + Romanian speech synthesis
          type: VladS159/common_voice_17_0_romanian_speech_synthesis
          args: 'config: ro, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 10.55709542810149

Whisper Small Ro - Sarbu Vlad - multi gpu --> 3

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 + Romanian speech synthesis dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1249
  • Wer: 10.5571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 10
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • total_train_batch_size: 48
  • total_eval_batch_size: 30
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 600
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2432 0.68 500 0.2134 19.7435
0.137 1.36 1000 0.1532 15.5189
0.0672 2.04 1500 0.1287 13.0426
0.0579 2.72 2000 0.1218 12.8659
0.0307 3.4 2500 0.1183 11.9887
0.0167 4.08 3000 0.1177 11.5866
0.016 4.76 3500 0.1149 10.9531
0.0099 5.43 4000 0.1212 10.9713
0.0058 6.11 4500 0.1216 10.8251
0.0056 6.79 5000 0.1224 10.6515
0.0036 7.47 5500 0.1238 10.6211
0.0035 8.15 6000 0.1249 10.5571

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.17.0
  • Tokenizers 0.15.1