Sentiment Classification in Polish
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
id2label = {0: "negative", 1: "neutral", 2: "positive"}
tokenizer = AutoTokenizer.from_pretrained("Voicelab/herbert-base-cased-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("Voicelab/herbert-base-cased-sentiment")
input = ["Ale fajnie, spadł dzisiaj śnieg! Ulepimy dziś bałwana?"]
encoding = tokenizer(
input,
add_special_tokens=True,
return_token_type_ids=True,
truncation=True,
padding='max_length',
return_attention_mask=True,
return_tensors='pt',
)
output = model(**encoding).logits.to("cpu").detach().numpy()
prediction = id2label[np.argmax(output)]
print(input, "--->", prediction)
Predicted output:
['Ale fajnie, spadł dzisiaj śnieg! Ulepimy dziś bałwana?'] ---> positive
Overview
- Language model: allegro/herbert-base-cased
- Language: pl
- Training data: Reviews + own data
- Blog post: Sentiment analysis - COVID-19 – the source of the heated discussion
- Downloads last month
- 171
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.